期刊文献+

一类椭圆方程无穷多解存在性 被引量:1

Existence of Infinitely Many Solutions for a Class of Elliptic Equations
原文传递
导出
摘要 利用H10(Ω)空间分解以及亏格和形变引理给出了半线性椭圆方程-Δu=λu+f(x,u)的D irichet问题无穷多解的存在性定理,其中λ1λ为任意给定正数. By ways of the orthogonal decomposition on H0^1(Ω), genus and the Deformation Lemma, the author has obtained infinitely many solutions for a class of semilinear elliptic equations -- △u = λu + f(x,u), where λ≥λ1.
作者 饶若峰
机构地区 宜宾学院数学系
出处 《数学的实践与认识》 CSCD 北大核心 2006年第11期238-242,共5页 Mathematics in Practice and Theory
基金 宜宾学院(青年)自然科学基金(2006Q01)
关键词 DIRICHLET问题 形变引理 特征值 dirichlet problem deformation iemma eigenvolue
  • 相关文献

参考文献4

  • 1Tang Chunlei, Gao Qiju. Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term[J].Acdernic Press, 1988,0022-0396 : 56-66.
  • 2Wu Xingping, Tang Chunlei. Some existence theorems for elliptic resonant problems[J]. J Math Anal Appl, 2001,264:133-146.
  • 3饶若峰.具临界指数椭圆方程-Δu=λ_κu+|u|^(2^*-2)u+f(x,u)非平凡多解存在性[J].数学年刊(A辑),2005,26(6):749-754. 被引量:12
  • 4Rabinowitz P H. Minimax methods in critical point theory with applications to differential equations[J]. CBMS Regional Conf Ser in Math 65, Amer Math Soc, Providence, R. I, 1986.

二级参考文献16

  • 1饶若峰.涉及第一特征值和临界指数的一类椭圆方程[J].数学进展,2004,33(6):703-711. 被引量:9
  • 2朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237.
  • 3Iannacci,R.& Nkashama,M.N.,Nonlinear two point boundary value problem at resonance without Landesman-Lazer condition[J].Proc.Amer.Math.Soc.,10(1989),943-952.
  • 4Tang Chunlei,Solvability for two-point boundary value problems[J].J.Math.Anal.Appl.,216(1997),368-374.
  • 5Halidias,N.,Elliptic problems with nonmonotone discontinuities at resonance[J].Abstract Anal.Appl.,7:9(2002),497-507.
  • 6Brezis,H.& Nirenberg,L.,Positive solutions of non-linear elliptic equations involving critical Sobolev exponents[J].Comm.Pure Appl.Math.,36(1983),437-477.
  • 7Wu Xingping & Tang Chunlei,Some existence theorems for elliptic resonant problems[J].J.Math.Anal.Appl.,264(2001),133-146.
  • 8Tang Chunlei & Gao Qiju,Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term[J].Academic Press,0022-0396(1998),56-66.
  • 9Tang Chunlei & Wu Xingping,Existence and multiplicity of solutions of semi-Linear elliptic equations[J].J.Math.Anal.Appl.,256(2001),1-12.
  • 10Lions,P.L.,The concentration-compactness principle in the calculus of variations[J].The limit case (Ⅰ),Revista Math.Ibero.,1(1985),145-201.

共引文献11

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部