期刊文献+

基于阈值和蚁群算法结合的聚类方法 被引量:11

Clustering Method Combining Threshold Algorithm with Ant Colony Algorithm
下载PDF
导出
摘要 为了改善聚类分析的质量,提出了一种基于阈值和蚁群算法相结合的聚类方法.按此方法,首先由基于阈值的聚类算法进行聚类,生成聚类中心,聚类个数也随之初步确定;然后将蚁群算法的转移概率引入K-平均算法,对上述聚类结果进行二次优化.实验表明,与K-平均算法等相比,该聚类方法的F-测度值(F-m easure)更高. To improve the quality of clusting analysis, a novel clustering method combining the threshold algorithm with the ant colony algorithm was proposed. With this method, the center and number of clustering are determined by using the clustering algorithm based on threshold, and then the above clustering results are optimized by the K-means algorithm combining with transition probability based on the ant colony algorithm. The experimental results show that the proposed clustering method has a higher F-measure than the K-means and other algorithms.
作者 杨燕 张昭涛
出处 《西南交通大学学报》 EI CSCD 北大核心 2006年第6期719-722,742,共5页 Journal of Southwest Jiaotong University
基金 四川省重大用应用基础研究项目(04JY029-001-4)
关键词 聚类 蚁群算法 K-平均算法 clustering ant colony algorithm K-means
  • 相关文献

参考文献9

  • 1韩家炜 Michelin K.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence-from natural to artificial system [ M ]. New York : Oxford University Press, 1999: 1-21, 149-164.
  • 3ESTER M, ESTE M, KRIEGEL H, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[ C]//2nd Infl, Conf, on Knowledge Discovering in Databases and Data Mining (KDD-96). Portland: AAAI Press,1996 : 226-231.
  • 4杨欣斌,孙京诰,黄道.一种进化聚类学习新方法[J].计算机工程与应用,2003,39(15):60-62. 被引量:41
  • 5LUMER E, FAIETA B. Diversity and adaptation in populations of clustering ants[ C]//3rd Ind. Conf. on simulation of adaptive behavior: from animals to animats 3. Cambridge : MIT Press, 1994:499-508.
  • 6杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 7TOPCHY A, JAIN A K, PUNCH W. A mixture model of clustering ensembles[ C] //SIAM Intl. Conf. on Data Mining.Orlando : ACM Press, 2004 : 379-390.
  • 8AYAD H, KAMEL M. Topic discovery from text using aggregation of different clustering methods [ C ] //Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence. Berlin Heidelberg: Springer-Verlag, 2002: 161-175.
  • 9MURPY P M, AHA D W. UCI repository of machine learning databases [ EB/OL]. [ 2004-12-03 ]. http://www.ics. uci.edu/mlearn/MLRepository.html.

二级参考文献17

  • 1贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 2Bilchev G,Parmee I C.Searching heavily contrained design spaces[C]. In:Proc Of 22^nd Int Conf Computer Aided Design'95,Yelta:Ukraine, 1995 : 230-235.
  • 3Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].In:Proc of 1^sl European conf Artificial Life.
  • 4Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293.
  • 5Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71.
  • 6Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66.
  • 7Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98.
  • 8Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175.
  • 9Bonabeau E, Dorigo M, T heraulaz G. Swarm intelligencefrom natural to artificial system[M]. New York: Oxford University Press, 1999.
  • 10Deneubourg J L, Goss S, Franks N, et al. The dynamics of collective sorting: robot-like ant and ant-like robot[A]. In: Meyer J A, Wilson S W ed. Proceedings first conference on simulation of adaptive behavior: from animals to animats[C]. Cambridge, MA: MIT Press, 1991. 356-365.

共引文献133

同被引文献80

引证文献11

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部