期刊文献+

抛物方程的扩展混合体积元方法 被引量:1

EXPANDED MIXED COVOLUME METHODS FOR PARABOLIC PROBLEMS
下载PDF
导出
摘要 提出了抛物方程的扩展混合体积元格式,使用矩形元的最低次R-T混合有限元空间,给出了扩展混合体积元解的误差分析,得到了扩展混合体积元解的最优阶L2模误差估计. We present an expanded mixed covolume scheme for parabolic problems. We use the lowest order Raviart - Thomas mixed element space. We give the error analysis of the expanded mixed covolume scheme and obtain optimal order error estimate in L2 .
作者 朱爱玲
出处 《山东师范大学学报(自然科学版)》 CAS 2006年第4期1-5,共5页 Journal of Shandong Normal University(Natural Science)
基金 山东省优秀中青年科学家科研奖励基金项目(2004BS01009)
关键词 抛物方程 扩展混合体积元 误差估计 parabolic problems expanded mixed covolume method error estimates
  • 相关文献

参考文献4

  • 1Adams R.Sobolev Spaces[M].London:Academic Press,1975
  • 2Ciarlet P G.The Finite Element Method for Elliptic Problems[M].North-Holland:Amsterdam,1978
  • 3Rui Hongxing,Lu T.An Expanded Mixed Covolume Methods for Elliptic Problems[M].Wiley InterScience:Inc,2004.8~23
  • 4Rui Hongxing.Symmetric mixed covolume methods for parabolic Problems[J].Numer Methods Partial Differential Eq,Wiley InterScience Inc,2002,18(5):561~583

同被引文献4

  • 1Rui Hongxing, Lu Tongchao. An expanded mixed covolume method for elliptic problems[J]. Numer Methods Partial Differential Equation, 2005,21 ( 1 ) : 8-23
  • 2Ciarlet P G. The Finite Element Method for Elliptic Problems[ M]. North- Holland: Amsterdam, 1978
  • 3Adams R. Sobolev Spaces[ M]. London: Academic Press, 1975
  • 4Rui Hongxing. Symmetric mixed covolume method for parabolic problems[J]. Numer Methods Partial Differential Equation,2002,18(5):561-583

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部