期刊文献+

TSP最短路径的必要条件初探 被引量:2

Necessary condition for shortest path of TSP
下载PDF
导出
摘要 对于被访问城市数为n的不对称旅行商问题,构造了一个n行和n列的方阵,每一行上的n个元素为同一个被访问城市;每一列上的n个元素为n个互不相同的被访问城市.依次从该方阵的第一列到第k列上各取出一个城市,同一行上不存在两个被取出的城市,这样取出的城市序列就构成了一条长度为k的路径.主要讨论最短路径的性质:如果一条长度为(n-1)的最短路径能被产生,则该路径上的任一长度为k的路径都为最短路径,k=1,2,…,n-2.该性质为旅行商问题算法研究的基础. For the asymmetrical traveling salesman problem (TSP) with n cities to be visited, a square matrix with n rows and n columns was constructed. Different vertex in each row represented the same city, and n vertex in each column represented n different cities. Taking one city from each column of the 1st colunm to the k^th column in this matrix with only one city at most taken from a row, the k cities formed a traveling salesman's path with length k. It is deduced that, if the shortest path with length n- 1 was found, any path of length k ( k = 1,2,…, n-2) on this path was definitely the shortest path. The result provides a basis for further study of the algorithm for the traveling salesman problem.
作者 洪玉振
机构地区 河海大学商学院
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期717-720,共4页 Journal of Hohai University(Natural Sciences)
关键词 TSP 顶点 方阵 路径 最短路径 traveling salesman vertices square matrix path shortest path
  • 相关文献

参考文献8

  • 1FOGEL D B.Applying evolutionary programming to selected traveling salesman problems[J].Cybernetics and Systems,1993,24(1):27-36.
  • 2GAMBOA D,REGO C,GLOVER F.Data structures and ejection chains for solving large-scale traveling salesman problems[J].European Journal of Operational Research,2005,160:154-171.
  • 3FREDMAN M L,JOHNSON D S,MCGEOCH L A,et al.Data structures for traveling salesmen[J].Journal of Algorithms,1995,18:432-479.
  • 4FRIEZE A M.Worst-case analysis of algorithms for travelling salesman problems[J].Methods Oper Res,1979,32:97-112.
  • 5MUHLENBEIN H,GORGES-SCHLEUTER M,KRAMER O.Evolution algorithms in combinatorial optimization[J].Parallel Computing,1998,7:65-85.
  • 6VALENZUELA C L,JONES A J.Evolutionary divid and conquer (Ⅰ):A novel genetic approach to the TSP[J].Evolutionary Computation,1994,1(4):313-333.
  • 7李小克.普通逻辑教程[M].北京:首都经济贸易大学出版社,2005:147-183.
  • 8MICHALEWICZ Z,FOGEL D B.How to solve it:Modern heuristics.Springer-Verlag Berlin Heidelberg 2000,1999:107-169.

同被引文献13

  • 1叶文,范洪达.基于改进蚁群算法的飞机低空突防航路规划[J].飞行力学,2004,22(3):35-38. 被引量:15
  • 2孙力娟,王良俊,王汝传.改进的蚁群算法及其在TSP中的应用研究[J].通信学报,2004,25(10):111-116. 被引量:38
  • 3孔令军 ,张兴华 ,陈建国 .基本蚁群算法及其改进[J].北华大学学报(自然科学版),2004,5(6):572-574. 被引量:18
  • 4陈宏建,陈崚,徐晓华,屠莉.改进的增强型蚁群算法[J].计算机工程,2005,31(2):176-178. 被引量:24
  • 5都基焱.无人机兵器原理[M].北京:解放军出版社,2005:347-481.
  • 6BELLMAN R.Dynamic programming treatment of the traveling salesman problem[J].J Assoc Comput Mach,1962,9(1):61-63.
  • 7HELD M,KARP R M.A dynamic programming approach to sequencing problems[J].J Soc Industr and Appl Math,1962,10(1):196-210.
  • 8CLIENTSOV A G,K OROTAYEVA L N,SESEKIN A N.On a modification of the method of dynamic programming in a successive approach problem[J].Zh Vychisi Mat Fiz,1989,29(8):1107-1113.
  • 9BUSLAYEVA L T,CHENTSOV A G.On the problem of the decomposition of the process of successive choice of variants[J].Mat Modebrovarne,1991,3(4):103-113.
  • 10CHENTSOV A G,KOROTAYEVA L N,NAZAROV E M.An assignment problem[J].Comput Maths Math Phys,1993,33(4):443-452.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部