期刊文献+

利用微生物电池研究微生物在矿物表面电子传递过程 被引量:17

Study on the electron transport process of microbe on the mineral surface using the microbe fuel cell
下载PDF
导出
摘要 利用微生物电池对微生物在矿物表面电子传递的过程进行了实验研究.结果表明:Geobacter metallireducens还原Fe(OH)3过程中直接接触方式起着重要作用,而微生物在矿物表面吸附形成的生物膜是一个关键因素,生物膜的形成又是一个相对较长的过程;细胞在固体表面的吸附并成膜是一种重要的代谢途径,而电子传递中间体AQDS虽然能在初期有效加快还原速率,但是当细胞吸附完成后,其作用就不再显著了,说明微生物催化矿物氧化还原反应动力学受生物膜控制.加速微生物在矿物表面成膜及保持其稳定性是影响微生物浸矿速率的重要因素. The electron transfer process of microbe on the mineral surface was studied by the use of a microbe fuel cell. The results indicate that direct contact plays an important role in the process of reducing Fe(OH)3 with Geobacte metallireducens, and the bio-film absorbed on the mineral surface is a key factor. Bio-film formation needs a relative long time. It is an important metabolic way to form bio-film by cell-absorption on the solid surface. Although mediate AQDS accelerates the reduction rate effectively at the early stage, but its effectiveness is not significant after the cell-absorption. So the microbe catalysis mineral oxidation-reduction reaction is influenced by bio-film. Accelerating the film formation on the mineral surface and keeping its stability are very important for the microbe leaching rate.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2006年第11期1009-1013,共5页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.20476009 No.20576137) 国家长远发展专项资助项目(No.DY105-04-01-08) 国家"973"计划资助项目(No.2003CB716001)
关键词 矿物表面 微生物 电子传递 生物膜 电子传递中间体 微生物电池 mineral surface microbe electron transport bio-film mediator microbe fuel cell
  • 相关文献

参考文献8

二级参考文献77

  • 1康峰,伍艳辉,李佟茗.生物燃料电池研究进展[J].电源技术,2004,28(11):723-727. 被引量:33
  • 2李浩然,冯雅丽.微生物浸出金川露天剥离低品位镍矿[J].北京科技大学学报,2004,26(6):584-587. 被引量:12
  • 3王淀佐,张亚辉,孙传尧.大洋多金属结核的处理技术评述[J].国外金属矿选矿,1996,33(9):1-13. 被引量:15
  • 4[5]Tayhas G, Palmore R, Whitesides M. Microbial and enzymatic biofuel cells. In:Eds Himmel M E, Baker J O, Overend R P.Enzymatic conversion of biomass for fuels production. Washington D C: American Chemical Society, 1994:271-290
  • 5[6]Thurston C F, Bennetto H P, Delaney G M, et al. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated proteus vulgaris fuel cell and its relation to coulombic yield. J Gen Microbiol,1985;131:1393
  • 6[7]Bennetto H P, Delaney H P, Mason J R, et al. The sucrose fuel cell:efficient biomass conversion using a microbial catalyst. Biotechnol Lett,1985; 7:699
  • 7[8]Lithgow A M,Romero L, Sanchez I C, et al. Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.Part 1. Selective improvement of the performance of biofuel cells with 2,6-disulphonated thionine as mediator. J Chem Res, 1986;5:178
  • 8[9]Veag C A, Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel cells with lactobacillus plantarum,streptococius lactes, and erwina dissolvens. Bioelectrochem Bioeng,1987; 17:217
  • 9[11]Tokuji I, Kenji K. Vioelecrocatalyses-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochimica et Biophysica Acta, 2003;1647:121-126
  • 10[12]Tanaka K,Vega C A,Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells.Bioelectrochem Bioenerg, 1983; 11:289

共引文献35

同被引文献297

引证文献17

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部