期刊文献+

信息检索中的遗传算法应用研究 被引量:5

The Applications of Genetic Algorithms in Information Retrieval
下载PDF
导出
摘要 讨论了遗传算法(GA)在信息检索中的应用.首先简要介绍遗传算法并给出了基本遗传算法(SGA)的伪代码描述;其次从查询优化、结构化文档检索、排序函数设计与选择三方面探讨了信息检索中的遗传算法的研究现状和应用情况,详细介绍了特定于信息检索问题而设计的遗传操作;最后讨论了目前遗传算法在信息检索应用中存在的不足、面临的问题和可能的解决方案与发展方向. The applications of genetic algorithms in information retrieval (IR) are studied. First, brief introduction of GA is given and pseudo code description of simple genetic algorithm (SGA) is presented. Then, detailed discussion and comparison, which are about research conditions of GA and its applications in IR, are introduced. The introduction can be divided into three aspects, namely query optimization, structured document retrieval and match function adaptation and discovery. Extra emphasis is put on IR specifically designed genetic operators. At last, the weak points of existing way of using GAs in IR, as well as problems facing, possible solutions and development trend of these technologies are discussed.
出处 《郑州大学学报(理学版)》 CAS 2006年第4期64-68,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 教育部科学技术重点研究项目 编号03144 海南省自然科学基金资助项目 编号60533
关键词 信息检索 排序函数 遗传算法 文档结构 information retrieval ranking function genetic algorithm document structure
  • 相关文献

参考文献8

  • 1GORDON M,PATHAK P.Finding information on the world wide web:the retrieval effectiveness of search engines[J].Information Processing and Management,1999,35(2):141-180.
  • 2HORNG J T,YEH C C.Applying genetic algorithms to query optimization in document retrieval[J].Information Proc and Management,2000,36 (5):737-759.
  • 3王自强,冯博琴.Web信息查询优化的遗传算法[J].控制与决策,2005,20(2):187-190. 被引量:2
  • 4KIM S,ZHANG B T.Genetic mining of HTML structures for effective web-document retrieval[J].Applied Intelligences,2003,(18):243-256.
  • 5TROTMAN A.Choosing document structure weights[J].Information Processing and Management,2005,41:243-264.
  • 6PATHAK P,GORDON M,FAN W G.Effective information retrieval using genetic algorithms based matching function adaptation[C]//Proceedings of the 33rd Hawaii International Conference on System Sciences,2000:1-8.
  • 7FAN Wei-guo,MICHAELD G,PRAVEEN P.A genetic ranking function discovery framework by genetic programming for information retrieval[J].Information Processing and Management,2004,40 (4):587-602.
  • 8FAN Wei-guo,MICHAELD G,PRAVEEN P,et al.Ranking function optimization for effective web search by genetic programming:an empirical study[C]//Proceedings of the 37th Hawaii International Conference on System Sciences,2004:105-112.

二级参考文献6

  • 1Ricardo B Y, Berthier R N. Modern Information Retrieval [M]. New York : Pearson Education Limited, 1999 : 36-49.
  • 2Chen H C. Machine learning for information retrieval:Neural networks, symbolic learning, and genetic algorithms [J ]. J of the American Society for Information Science, 1995,46 (3) :194-216.
  • 3Boughanem M, Chrisment C, Tamine L. Genetic approach to query space exploration[J]. Information Retrieval, 1999,1(3) : 175-192.
  • 4Pathak P, Gordon M, Fan W G. Effective information retrieval using genetic algorithms based matching functions adaptation [A]. Proc of the 33rd Annual Hawaii International Conference on System Sciences[C]. Piseataway : IEEE Service Center, 2000 : 1-8.
  • 5Horng J T, Yeh C C. Applying genetic algorithms to query optimization in document retrieval [ J ].Information Proc and Management, 2000, 36 (5) : 737-759.
  • 6Voorhees E M, Harman D. Overview of TREC2001[EB/OL]. http://trec.nist. gov/pubs/trec10/papers/overview-10, pdf, 2001-12-25.

共引文献1

同被引文献32

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部