期刊文献+

基于经验搜索的多级存储层次优化 被引量:1

Memory Hierarchy Optimization Based on Empirical Search
下载PDF
导出
摘要 存储墙是影响单机性能优化的重要因素,其缓解依赖于对程序进行存储优化。论文提出基于经验搜索的多级存储层次优化方法,将优化多级存储层次问题转化为对优化参数的经验搜索问题,并基于遗传算法选择全局最优解。实验表明,该技术可以自适应不同应用程序,大大降低存储访问时间,降低存储因素对程序性能的影响,从而有效地缓解存储墙问题。 Memory wall is an important factor that effects program performance optimization.And its alleviation relies on memory optimization of the program.We propose the approach of Memory Hierarchy Optimization based on Empirical Search.h turns the problem of optimizing across multiple levels of the memory hierarchy to an empirical search to optimization parameter problem,and selects the best overall solution.Experiments show that this approach can greatly decrease time on memory access and memory access factor to performance,therefore,effectively alleviate the problem of memory wall,moreover,it can automatically adapt different programs.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第34期67-69,共3页 Computer Engineering and Applications
基金 并行与分布处理国家重点实验室基金资助项目(51484020405KG0101)。
关键词 存储墙 经验搜索 优化参数 自适应 memory wall empirical search optimization parameter self-tuning
  • 相关文献

参考文献6

  • 1WHALEY R C,PETITET A,DONGARRA J J.Automated empirical optimization of software and the ATLAS project[J].Parallel Computing,2001,27 (1/2):3 -35.
  • 2VUDUC R,DEMMEL J W,BILMES J.Statistical models for empirical search-based performance tuning[J].International Journal of High Performance Computing Applications,2004,18 (1):65-94.
  • 3WHALEY C.Automated empirical optimization of high performance floating point kernels[D].Departnent of Computer Science,Florida State University,2004.
  • 4CHEN 2 C,CHAME J,HALL M W.Combining models and guided empirical search to optimize for multiple levels of the memory hierarchy[C]//Proc of the International Symposium on Code Generation and Optimization,2005.
  • 5BROWNE S,DONGARRA J,GARNER N,et al.A portable programming interface for performance evaluation on nodern processors[J].International Journal of High Performance Computing Applications,2000,14(3):189-204.
  • 6车永刚,王正华,李晓梅.一个基于硬件计数器的程序性能测试与分析工具[J].计算机科学,2004,31(1):170-174. 被引量:3

二级参考文献16

  • 1[1]Ghosh S,et al.Cache Miss Equations: A Compiler Framework for Analyzing and Tuning Memory Behavior.In ACM Transactions on Programming Languages and Systems,1999,21(4):702~745
  • 2[2]http://www.cs.wisc.edu/~mscalar/simplescalar.html
  • 3[3]Merten M C,et al.An Architectural Framework for Run-Time Optimization.IEEE Transactions on Computers,2001,50(6):567~589
  • 4[4]Lambert, et al.Profiling I/O Interrupts in Modern Architectures.In:8th Intl.Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,San Francisco, California,2000
  • 5[5]Hirzel M, et al.Bursty Tracing: A Framework for Low-Overhead Temporal Profiling.In:4th Workshop on Feedback-Directed and Dynamic Optimization (FDDO), Dec.2001
  • 6[6]http://icl.cs.utk.edu/projects/papi/
  • 7[7]http://www.gz-juelich.de/zam/PCL/
  • 8[8]http://research.compaq.com/SRC/dcpi/
  • 9[9]http://developer.intel.com/vtune/
  • 10[10]IA-32 Intelⅳ Architecture Software Developer's Manual: Volume 3: System Programming Guide.Intel Corporation.2002

共引文献2

同被引文献52

  • 1Knijnenburg P,Kisuki T,Boyle M O.Iterative compilation[C]//LNCS 2268 :Embedded Processor Design Challenges System Architecture, Modeling and Simulation.[S.l.]:Springer Verlag,2002: 171-187.
  • 2Qasem A.Automatic tuning of whole applications using direct search and a performance-based transformation system[C]//Proc LACSI Symposium,Los Alamos Computer Science Institute,NM, USA, 2004.
  • 3Hooke R.Direct search solution of numerical and statistical problems[J].Journal of the ACM, 1961:212-229.
  • 4You H,Seymour K,Dongarra J.An effective empirical search method for automatic software tuning,ICL-UT-05-02[R],UTK CS Technical Report, 2005.
  • 5Vuduc R.Statistical models for empirical search-based performance tuning[J].International Journal of High-Performance Computing Applications, 2004,18( 1 ) : 135-158.
  • 6Kulkarni P A.Fast and efficient searches for effective optimization- phase sequences[J].ACM Transactions on Architecture and Code Optimization, 2005,2(2) : 165-198.
  • 7Chen Chun.A systematic approach to model-guided empirical search for memory hierarchy optimization[C]//Proc 18th International Workshop on Languages and Compilers for Parallel Computing, Hawthorne, New York, 2005.
  • 8Epshteyn A,Garzaran M.Analytic models and empirical search:A hybrid approach to code optimization[C]//Proc 18th International Workshop on Languages and Compilers for Parallel Computing, 2005.
  • 9Cooper K D,Grosul A.ACME:Adaptive compilation made efficient[C]// Proc ACM Conference on Languages,Compilers,and Tools for Embedded Systems, 2005 : 69-77.
  • 10Dubach C, Cacazos J.Fast compiler optimization evaluation using code-feature based performance prediction[C]//Conf Computing Frontiers, 2007 : 131 - 142.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部