期刊文献+

蕴含K_6-C_4可图序列

Potentially K_6-C_4 Graphic Sequences
下载PDF
导出
摘要 如果S有一个实现包含K6-C4作为子图,则称序列S为蕴含K6-C4可图.设σ(K6-C4,n)表示使得每个满足σ(S)≥σ(K6-C4,n)的n项可图序列S是蕴含K6-C4的最小度和.本文证明了σ(K6-C4,n)=6n-10对n≥6成立. A sequence S is potentially K6 - C4 graphical if it has a realization containing a K6 - C4 as a subgraph. Let σ ( K6 - C4, n )denote the smallest degree sum such that every n - term graphical sequences S with σ(S) ≥σ ( K6 - C4, n ) is potentially K6 - C4 graphical. In this paper, we prove that σ( K6 - C4, n )=6n - 10, for n ≥ 6.
出处 《漳州师范学院学报(自然科学版)》 2006年第4期15-18,共4页 Journal of ZhangZhou Teachers College(Natural Science)
基金 国家自然科学基金资助项目(10271105) 福建省自然科学基金资助项目(Z0511034) 漳州师范学院科研项目资助
关键词 度序列 蕴含K6-C4可图序列 graph degree sequence potentially K6 - C4 graphic sequences
  • 相关文献

参考文献11

  • 1P.Erdos,On sequences of integers no one of which divides the product of two others and some related problems[J],Izv.Naustno-Issl.Mat.i Meh.Tomsk 1938,(2),74-82.
  • 2P.Erdos,M.S.Jacobson and J.Lehel,Graphs realizing the same degree sequences and their respective clique numbers[M],in Graph Theory,Combinatorics and Application,Vol.1(Y.Alavi et al.,eds.),John Wiley and Sons,Inc.,New Yonk,1991.439-449.
  • 3R.J.Gould,M.S.Jacobson and J.Lehel,Potentially G-graphic degree sequences[M],in Combinatorics,Graph Theory and Algorithms,Vol.2(Y.Alavi et al.,eds.),New Issues Press,Kalamazoo,MI,1999.451-460.
  • 4Lai Chunhui,A note on potentially K4-e graphical sequences[J],Australasian J.of Combinatorics 2001,(24),123-127.
  • 5Lai Chunhui,An extremalproblem on potentially Km-C4 graphical sequences[J],Journal of Combinatorial Mathematics and Combinatorial Computing,accepted.
  • 6Li Jiong-Sheng and Song Zi-Xia,An extremal problem on potentially Pk graphic sequences,Discrete Math,2000,(212).
  • 7Li Jiong-Sheng and Song Zi-Xia,The smallest degrtee sum that yields potentially Pk graphical sequences[J],J.Graph Theory,1998,(29),63-72.
  • 8Li Jiong-Sheng and Song Zi-Xia,on the potentially Pk graphic sequences[J],Discrete Math.1999,(195),255-262.
  • 9Li Jiong-Sheng,Song Zi-Xia and Luo Rong,The Erdos-Jacobson-Lehel conjecture on potentially Pk graphic sequence is true[J],Science in China(Series A),1998,41(5):510-520.
  • 10P.Turan,On an extremal problem in graph theory[J],Mat.Fiz.Lapok,1941,(48):436-452.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部