摘要
如果S有一个实现包含K6-C4作为子图,则称序列S为蕴含K6-C4可图.设σ(K6-C4,n)表示使得每个满足σ(S)≥σ(K6-C4,n)的n项可图序列S是蕴含K6-C4的最小度和.本文证明了σ(K6-C4,n)=6n-10对n≥6成立.
A sequence S is potentially K6 - C4 graphical if it has a realization containing a K6 - C4 as a subgraph. Let σ ( K6 - C4, n )denote the smallest degree sum such that every n - term graphical sequences S with σ(S) ≥σ ( K6 - C4, n ) is potentially K6 - C4 graphical. In this paper, we prove that σ( K6 - C4, n )=6n - 10, for n ≥ 6.
出处
《漳州师范学院学报(自然科学版)》
2006年第4期15-18,共4页
Journal of ZhangZhou Teachers College(Natural Science)
基金
国家自然科学基金资助项目(10271105)
福建省自然科学基金资助项目(Z0511034)
漳州师范学院科研项目资助
关键词
图
度序列
蕴含K6-C4可图序列
graph
degree sequence
potentially K6 - C4 graphic sequences