期刊文献+

ZnS:Er量子点材料制备及其受激发光特性研究 被引量:1

Fabrication and Luminescene Properties of ZnS:Er Quantum Dots Material Pumped by 980 nm LD
原文传递
导出
摘要 在水性介质中,制备了ZnS:Er量子点,并对其的X射线(XRF)谱、X射线衍射(XRD)谱、透射电子显微镜(TEM)图像和光致发光(PL)谱进行了研究,确定了所制备的ZnS:Er量子点材料中Er的浓度,观测到ZnS:Er量子点呈粒径为4nm的近球型结构。利用LD激发,在LD不同电流强度下得到ZnS:Er量子点从波长1500nm到1650nm的宽谱发射,并随着电流强度的增加ZnS:Er量子点的发射强度明显增加,当电流强度达到1.5A时,1545nm波长处的发射峰更明显。 We synthesized ZnS: Er doped quantum dots(QDs) in the aqueous medium from readily available precursors. The composition, construction, surface morphology and luminescence properties of the Er doped QDs were evaluated by XRF,TEM,XRD and emission spectra. The average particle size was calculated to be 4 nm,using the Scherrer formula which is in excellent agreement with that obtained from the TEM micrography. The LD fiber laser at 976±2 nm was utilized as the excitation source. The PL spectra with the broadband extending from 1. 500 to 1, 650 μm, is attributed to the intra-4f transition between the first excited state (^4 I13/2) and the ground state (^4 I15/2) of Er^3+ at room temperature. It also shows that photoluminescence intensity increases with the increasing energy of excitation source. Er doped QDs have a wider and flatter fluorescence spectrum at 1. 500 μm region. It is because that the energy levels of Er^3+ is split by a Coulomb interaction between electrons that includes the spin correction and spin-orbit coupling, and eventually by the Stark effect due to ZnS QDs crystal field and local coordination.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2006年第12期1487-1491,共5页 Journal of Optoelectronics·Laser
基金 国家"973"计划资助项目(2003CB314906) 天津理工学院科技发展基金资助项目(Lg04032)
关键词 ZnS:Er量子点 光致发光(PL) LD红外激发 红外发射 ZnS: Er quantum dots(QD) LD Photoluminescence(PL) infrared emission infrared excition
  • 相关文献

参考文献16

  • 1Roger F Uren.Cancer surgery joins the dots[J].Nature Biotechnology,2004,22:38-39.
  • 2Sungjee Kim,Yong Taik Lim,Edward G Soltesz,et al.Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J].Nature Biotechnology,2004,222:93-97.
  • 3DING Shi-you,Jones M,Tucker M P,et al.Quantum dot molecules assembled with genetically engineered proteins[J].Nano Letters,2003,3:1581-1585.
  • 4YAN Xiao,Peter E Barker.Semiconductor nanocrystal probes for human metaphase chromosomes[J].Nucleic Acids Research,2004,322:28.
  • 5WU Xing-yong,LIU Hong-jian,LIU Jian-quan,et al.Immunofluorescent labeling of cancer marker her and other cellular targets with semiconductor quantum dots[J].Nature Biotechnology,2003,21:41-46.
  • 6Coe Seth,Woo Wing-Keung,Bawendi Moungi,et al.Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J].Nature,2002,4220:800-803.
  • 7Sumit Chaudhary,Mihrimah Ozkan.Trilayer hybrid polymer-quantum dot light-emitting diodes[J].Applied Physics Letters,2004,84:2925-2927.
  • 8Hans-Jurgen Eisler,Vikram C Sundar,Moungi G Bawendib.Color-selective semiconductor nanocrystal laser[J].Applied Physics Letters,2002,80:4614-4616.
  • 9Miri Kazes,David Y Lewis,Yuval Ebenstein,et al.Lasing from semiconductor quantum rods in a cylindrical microcavity[J].Advanced materials,2002,14:317-321.
  • 10Amjad Y Nazzal,QU Lian-hua,PENG Xiao-gang,et al.Photoactivated CdSe nanocrystals as nanosensors for gases[J].Nano Letters,2003,3:819-822.

二级参考文献14

  • 1J S Pan,H B Pan. Size-quantum effect of the energy of a change carrier in a semiconductor crystallite[J]. Phys.Solidi. B148: 129.
  • 2J C Marini, B Strebe, E Kartheuser. Exiton-Phonon interaction in CdSe and CuCl polar semiconductor nanosphere[J]. Phys. Rev. , B. B50: 14302.
  • 3K Oshiro,K Akai,Matsuura. Polaron in a spherical quantum dot embedded in nonpolar matrix[J]. Phys. Rev.,B58 : 7986.
  • 4S N Klimin,E P Pokalilov,V M Fomin. Bulk and interface polarons in quantum wires and dots[J]. Phys. Status solidi, B184: 373.
  • 5M H Degani, H A Farias. Polaron effects in one-dimensional lateral quantum wires and parabolic quantum dots[J].Phys. Rev. , 1990 ,B42:11950.
  • 6L Wendler,A V Chaplic,R Haupt. Cyclotron resonance of magnetopolarons in anisotropic parabolic quantum dots[J]. J . Phys. Condens . Matter, 1993 ,5: 8031.
  • 7S Mukhopadhyay,A Chatterjee. Energy levels of the Froehlich polaron in a spherical quantum dot[J]. Phys. Lett.,1995,A204:411.
  • 8Y Lepine,G Bruneau. The effect of an anisotropic polaron in a parabolic quantum dot[J]. J. Phys: Condens. Matter,1998,10:1495.
  • 9S Mukhopadhyay, A Chatterjee. Relaxed and effective-mass excited states of a quantum-dot polaron[J]. Phys.Rev., 1998, B58: 2088.
  • 10B S Kandemir,T Atanhan. Polaron effects on an anisotropic quantum dot in a magnetic field[J]. Phys. Rev.,1999,B60:4834.

共引文献18

同被引文献7

  • 1王立国,肖景林,李树深.半导体量子点中强耦合磁极化子的性质[J].Journal of Semiconductors,2004,25(8):937-941. 被引量:10
  • 2王海龙,秦文华,赵传华.InAs/GaAs自组装量子点结构的能带不连续量[J].光电子.激光,2007,18(1):74-77. 被引量:4
  • 3J L Xiao,W Xiao. Influence of the inter action between phonons on the properties of the surface magnetopolaron in polar crystals[J]. Phys Rev,1998 ,B58:1678-1688.
  • 4Zhu K D,Kobayashi T. Magnetic field effects on strong-coupling polarons in quantum dots[J]. Phys Lett A,1994,190:337-340.
  • 5Zhou H Y,Gu S W,Shi Y M. Effects of strong coupling magnetopolaron in quantum dot[J]. Modern Phys Lett B,1998. ,12(17) :693-701.
  • 6Mukhopadhyay S,Chatterjee A. The ground and the first exited states of an electron in a multidimensional polar semiconductor quantum dot:an all-coupling variational approach[J]. J Phys Condens Matter, 1999,11:2071-2077.
  • 7Mukhopadhyay S, Chatterjee A. Rayleigh-Schroedinger perturbation theory for electron-phonon interaction effects in polar semiconductou quantum dots with parabolic confinement[J]. Phys Lett A, 1995,204: 411-417.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部