Positive Periodic Solutions for Nonautonomous Differential Equations with Delay
被引量:2
Positive Periodic Solutions for Nonautonomous Differential Equations with Delay
摘要
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
基金
Supported by the Natural Science Foundation of Guangdong Province(032469)
参考文献8
-
1LEELA S,OGUZToRELI M N.Periodic boundary value problem for differential equations with delay and monotone iterative method[J].J Math Anal Appl,1987,122:301-307.
-
2HADDOCK J R,NKASHAMA M N.Periodic boundary value problems and monotone iterative methods for functional differential equations[J].Nonlinear Anal,1994,22:267-276.
-
3EDUARDO LIZ,NIETO J J.Periodic boundary value problems for a class of functional differential equations[J].J Math Anal Appl,1996,200:680-686.
-
4JIANG D Q,WEI J J.Eistence of positive periodic solutions for nonautonomous differential equations with delay[J].Chinese Annals of Mathematics,1999,20A:715-720.
-
5LI Y K.Existence and global attractivity of periodic positive solutions of a class differential equation with delay[J].Science in China,1998,28A(2):108-118.
-
6罗交晚,庾建设.具分布偏差变元非自治数学生态学方程的全局渐近稳定性[J].数学学报(中文版),1998,41(6):1273-1282. 被引量:15
-
7KUANG Y.Delay Differential Equations with Applications in Population Dynamics[M].Boston:Academic Press,1993.
-
8GUO D,LAKSHMIKANTHAM V.Nonlinear Problems in Abstract Cones[M].New York:Academic Press,1988.
二级参考文献5
-
1翁佩萱,J Biomathemat,1995年,10卷,1期,14页
-
2Gopalsamy K,Bull Inst Math Acad Sin,1994年,22卷,4期,341页
-
3Joseph W H So,Differ Equ Dyn Syst,1994年,2卷,1期,11页
-
4Kuang Y,Delay Differential Equations with Applications inPopulation Dynamics,1993年
-
5Kuang Y,Jap J Industry Applied Mathematics,1992年,9卷,2期,205页
共引文献14
-
1刘玉记.一类时滞差分方程的全局吸引性及其应用[J].应用数学,2001,14(2):28-33. 被引量:2
-
2刘玉记,谈小球.非自治时滞差分方程的渐近稳定性[J].云梦学刊,1999,20(4):1-7. 被引量:2
-
3赵西安.透光屋面设计(续1)[J].建筑技术,2006,37(10):777-783.
-
4刘一龙.具分布偏差变元非自治数学生态学方程的全局渐近稳定性[J].桂林电子科技大学学报,2007,27(3):239-242.
-
5刘兴元,唐爱民.一类具脉冲时滞微分方程解的渐近性[J].邵阳学院学报(自然科学版),2008,5(2):7-10.
-
6蒋达清,魏俊杰.EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR VOLTERRA INTERGO-DIFFERENTIAL EQUATIONS[J].Acta Mathematica Scientia,2001,21(4):553-560. 被引量:8
-
7涂建斌.具分片常变量微分方程模型的全局吸引性[J].西北师范大学学报(自然科学版),2000,36(2):5-11.
-
8刘玉记,谈小球,涂建斌.一类具逐段常变量泛函微分方程的解的全局吸引性及其应用[J].岳阳师范学院学报(自然科学版),2000,13(1):19-25.
-
9刘玉记.非自治多时滞差分方程零解的渐近稳定性[J].贵州大学学报(自然科学版),2000,17(3):161-169.
-
10刘玉记,周利麟.非自治多时滞微分方程的渐近稳定性[J].烟台师范学院学报(自然科学版),2000,16(3):165-168.
同被引文献21
-
1彭世国,朱思铭.泛函微分方程的周期正解[J].系统科学与数学,2006,26(5):591-598. 被引量:1
-
2Zhang Suping,Jiang Wei.POSITIVE PERIODIC SOLUTION TO A CLASS OF NONLINEAR PERIODIC DIFFERENTIAL EQUATION WITH IMPULSES AND DELAY[J].Annals of Differential Equations,2007,23(1):104-112. 被引量:3
-
3JIANG Da-qing, WEI Jun-jie. Existence of positive periodic solutions of nonautonomous functional differ?ential equations[J]. Chinese Ann Math A, 1999, 20(6): 715-720.
-
4CHENG Sui-sun, ZHANG Guang. Existence of positive periodic solutions for nonautonomous functional differential equations[JJ. Election J Differential Equations, 2001, 59: 1-8.
-
5WANG Hai-yan. Positive periodic solutions of functional differential equations[J]. J Differential Equations, 2004, 202: 354-366.
-
6LIU Xi-Ian, LI Wan-tong. Existence and uniqueness of positive periodic solutions of functional differential equations[JJ. J Math Anal Appl, 2004, 293: 28-39.
-
7BAI Ding-yong, xu Yuan-tong. Periodic solutions of first order functional differential equations with peri?odic deviations[J]. Comput Math Appl, 2007, 53.: 13.61-13.66.
-
8Ll Yong-kun, FAN Xuan-Iong, ZHAO Li-li, Positive periodic solutions of functions differential equations with impulses and a parameter[J]. Comput Math Appl, 2008, 56: 2556-2560.
-
9WU Yue-xiang. Existence of positive periodic solutions for a functional differential equation with a param?eter[J]. Nonlinear Analysis, 2008, 68(7): 1954-1962.
-
10WENG Ai-zhl, SUN Ji-tao. Positive periodic solutions of first-order functions differential equations with parameter[J]. J Comput Appl Math, 2009, 229: 3.27-3.3.2.
-
1李媛媛,汤惟,韩海.二次矩阵方程X^2-2AX+B=0的唯一解[J].延边大学学报(自然科学版),2009,35(3):211-213. 被引量:2
-
2西密尔.通兹.关于一类五阶常微分方程解的渐近性质[J].应用数学和力学,2003,24(8):791-798.
-
3胡爱莲.一类四阶微分方程的全局渐近稳定性[J].喀什师范学院学报,1999,19(2):27-30.
-
4刘俊.一类三阶非自治微分方程解的渐近性态[J].四川师范大学学报(自然科学版),2000,23(2):138-141.
-
5赵晓强.稳定性理论中两个新定理[J].纯粹数学与应用数学,1989,5(5):81-82.
-
6张荣荣,秦宏立,薛巧梅.对n维非自治微分方程稳定性若干定理的推广[J].西南民族大学学报(自然科学版),2009,35(1):63-66.
-
7沙红科.一类二阶非线性非自治微分方程周期解的存在唯一性[J].数学的实践与认识,2003,33(8):78-83.
-
8贾保国.非自治微分方程解的最终有界性[J].河北地质学院学报,1995,18(5):399-405.
-
9刘锡平,贾梅,葛渭高.一类非自治迭代泛函微分方程[J].高校应用数学学报(A辑),1998,13(3):249-256. 被引量:11
-
10曾意.Banach空间中半线性非自治微分方程的概自守解[J].内江师范学院学报,2017,32(4):38-41. 被引量:1