期刊文献+

基于多传感器信息融合的远距离目标检测 被引量:2

Long-Range Target Detection Based on Multisensor Data Fusion
下载PDF
导出
摘要 远距离目标检测具有重要的军事应用价值,而多传感器能提供互补和冗余信息,在远距离目标检测中具有独特的优势。针对可见光和红外热图像序列中的远距离目标,提出了一种基于信息融合的目标检测方法。该方法通过帧间差累积,在两种传感器的图像中确定了运动目标区域,定义了运动目标区域可信度度量,利用融合的规则确定了最后的运动区域。在运动区域中利用简单的分割方法将目标提取出来,最后经过特征级融合得到了检测结果。本方法不需要进行背景估计,多传感器信息的冗余增强了检测结果的可靠性,实验结果证明了本文方法的有效性。 Long-range target detection takes an important part in military applications. Multisensor can provide complementary and redundant information and has advantage in long-range target detection. In this paper, the long-range target detection based on data fusion in visual and thermal infrared image sequences is proposed. In this way, the moving targets range in two sensor image sequences are determined by using a frame difference accumulation, and the reliable measure at the moving target range is defined and the final moving range is determined with the data fusion rules. The targets at the moving range are extracted by using a simple segmentation. The detection results are acquired by feature-level image fusion. The multisensor redundant information enhances the reliability of the detection. The results show that this approach is feasible and robust.
作者 熊大容 杨烜
出处 《红外技术》 CSCD 北大核心 2006年第12期695-698,共4页 Infrared Technology
基金 国家重点实验室基金资助(51483040105QT5118)
关键词 可见光图像序列 红外图像序列 帧间差 信息融合 visual image sequences thermal infrared image sequences frame difference data fusion
  • 相关文献

参考文献11

二级参考文献34

  • 1王泽和.双波段热像仪及其在军事上的应用[J].红外技术,1993,15(1):21-26. 被引量:1
  • 2钱忠良,陈伟灿.红外图像目标瞄准点测量和基于自适应Kalman滤波的瞄准点跟踪[J].电子测量与仪器学报,1994,8(1):43-51. 被引量:5
  • 3邵远,何发昌,罗志增.多传感器信息融合浅析[J].电子学报,1994,22(5):73-79. 被引量:28
  • 4李洪志,陈冬清.数据融合技术[J].高技术通讯,1994,4(6):42-44. 被引量:10
  • 5Castleman K R.数字图像处理[M].北京:电子工业出版社,1998.423-430.
  • 6[1]P. Burt,E.Adelson. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on communications., 1983, 31(4):532~540.
  • 7[2]Toet A van Ruybven L,J,Valeton J.M. Merging thermal and visual images by a contrast pyramid[J]. Optical Engineering, 1989, 28(7):789~792.
  • 8[3]Toet A. Multiscale contrast enhancement with application to image fusion[J]. Optical Engineering, 1993, 31(5): 1026~1031.
  • 9[4]V. Melnik, I.Shmulevich, K.Egiazarian, J.Astola. Iterative block-median pyramid transform based denoising[A]. Proc ofSPIE.[C], international symposium optical science, Engineering, and Instrumentation, Denver, Colorado, USA, 1999.
  • 10[5]Adelson E.H., Simoncelli E., Hingorani R. Orthogonal Pyramid transforms for image coding[A]. Proc. SPIE[C], 1987. 845:50~58.

共引文献127

同被引文献19

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:183
  • 2石岚.外军无人机光电侦查监视载荷研究[J].红外与激光工程,2007,36(z2):103-106. 被引量:9
  • 3王元斌,夏学知.多传感器综合目标识别技术研究[J].舰船电子工程,2004,24(4):8-11. 被引量:9
  • 4陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 5Josien. P, Antoine. J, Max.V. Image registration by maximization of combined mutual information and gradient information[J]. IEEE Trans on Medical Image, 2000, 19(8): 809.
  • 6Rueckert. D, Clarkson M. J1. Non-rigid registration using higher-order mutual information[C]//Proc SPIE Medical Imaging 2000: Image Processing, San Diego, CA, 2000: 438-447.
  • 7Jezching Ton, Anitk Jain. Registration Landsat Images by Point Matching[J]. IEEE Transaction on GRS, 1989, 27(5): 642.
  • 8Hui Li, Sanjit. K. A Contour-based Approach to Multisensor Image Registration[J]. IEEE on Image processing, 1995, 4(3): 320-335.
  • 9Studholme C, Hilt D L G, Hawkes D J. An overlap invariant entropy measures of 3D medical image alignment[J]. Pattern Recognition, 1999, 32(1): 71-86.
  • 10Gambardella L M, Dorigo M. Solving symmet ric and asymmetric TSPs by ant colonies[C]//Proc, of lnt Conf. on Evolutionary Computation. Piscataway : 1EEE, 1996: 622-627.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部