期刊文献+

关于规定曲率弯矩方程弯矩正负号的问题 被引量:1

The problem of designating the sign of bending moment in the curvature-bending moment equation
下载PDF
导出
摘要 阐明了曲率弯矩方程的物理概念及用此方程建立梁(柱)弯曲微分方程的思路,论述了在建立梁(柱)弯曲微分方程中规定弯矩正负号(简称这种规定)引起的问题:1)这种规定破坏了曲率弯矩方程所反映的物理概念及用曲率弯矩方程建立梁(柱)弯曲微分方程的思路;2)这种规定导致了梁(柱)截面内力矩与梁(柱)曲率正负号无关的错误概念;3)按这种规定建立梁(柱)弯曲微分方程须记住弯矩正负号的规定,与此种规定对应的坐标系,不考虑梁(柱)曲率的正负号等3条内容,否则得出错误结果。建议材料力学在阐述梁(柱)弯曲微分方程中删去这种规定,以避免上述问题。 The physical meaning of curvature- bending moment equatian and the procedure for the construction of differential equation for beam(column)bending by this equation was pointed out. The problems arising from the formulation of differential equation for beam(column)bending were discussed during designating the sign for bending moment. 1 )This sign convention has conflicted with the physical meaning of curvature- bending moment equation. 2)The incorrect concept may be directly obtained that the cross- sectional resisting moments are independent of the sign for the curvature. 3)The sign convention itself, the arrangement of corresponding coordinate systems and the sign for the curvature should not be taken into account, otherwise the incorrect resuhs may be obtained. It is strnngly recommended that this sign convention should be cancelled in the canstruetion of the differential equation for beam(column) bending.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2006年第5期93-96,共4页 Journal of Railway Science and Engineering
关键词 曲率 弯矩 方程 截面力矩 beam curvature bending moment equation of equilibrium cross section couple
  • 相关文献

参考文献6

  • 1Timoshenko S, Maccullough G H. Elements of strength of materials[M]. 1947.
  • 2Timoshenko S, Gere J M. Theory of elastic stability[M]. 2nd ed. McGraw - Hill: New York, 1961.
  • 3曾庆元.薄壁杆件的扭转与稳定性[M].长沙:长沙铁道学院,1978.
  • 4Timoshenko S. Strength of materials(Part Ⅰ)[M]. 3rd ed.Canada: V N Reinhold Company, 1958.
  • 5单辉组.材料力学教程[M].北京:高等教育出版社,2004.
  • 6纳什.材料力学[M].赵志岗,译.北京:科学出版社,2002.

共引文献1

同被引文献20

  • 1WANG Quan-feng. A simple solution for lateral buckling of thin-walled symmetric members[J].Communications in Numerical Methods in Engineering, 2003, 19(1): 49-58.
  • 2WANG Quan-feng. Stability of shear-wall building using method of weighted residuals[J]. Journal of Engineering Mochanics, 1991, 117(3): 700-706.
  • 3PI Yong-lin, Bradford M A. Effects of approximations in analysis of beams of open thin-walled cross-section-Part Ⅰ: Flexuraltorsional stability[J]. International Journal for Numerical Methods in Engineering 2001, 51(3): 757-772.
  • 4PI Yong-lin, Trahair N S. Energy equation for beam lateral buckling[J]. Journal of Structural Engineering, 1992, 118(6): 1462-1479.
  • 5PI Yong-lin, Trahair N S. Prebuckling detections and lateral buckling I: Theory[J]. Journal of Structural Engineering, 1992, 118(11): 2949-2966.
  • 6De J H. An approach to more complicated lateral-buckling problems[J]. Journal of Constructional Steel Research, 1990, 16(3): 231-246.
  • 7Bradford M A, Cuk P E. Lateral buckling of tapered monosymmetric Ⅰ-beams[J]. Journal of Structural Engineering, 1988, 114(5): 966-977.
  • 8AI-Bermani F G A, Kitipomchai S. Nonlinear analysis of thin-walled structures using least element/member[J]. Journal of Structural Engineering, 1990, 116(1): 215-234.
  • 9Sapkas A, Kollar L P. Lateral-torsional buckling of composite beams[J]. International Journal of Solids and Structures, 2002, 39(11): 2939-2963.
  • 10Kim N, Shin D K, Kim M Y. Exact lateral buckling analysis for thin-walled composite beam under end moment[J]. Engineering Structures, 2007, 29(8): 1739-1751.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部