期刊文献+

基于群体智能的选择性决策树分类器集成 被引量:3

Swarm Intelligence-Based Selective Ensemble with Decision Trees Classifiers
下载PDF
导出
摘要 尽管选择性集成方法的研究和应用已取得了不少重要成果,然而其实现方法计算复杂度高、效率低仍是应用该方法的一个瓶颈。为此,提出了一种新的高速收敛的选择性集成方法。该方法使用C4.5决策树分类器作为基学习器,利用高速收敛的群体智能算法来寻找最优集成模型,并在UCI数据库的多值分类数据集上进行了实验。实验结果表明,该方法计算效率高,其精度和稳定性比Bagging方法都要高,可以成为一种高效的选择性集成的实现方法。 Although a good many important results have been achieved about the research of selective ensemble approach and its application, it remains a computational bottleneck that the implementstion of selective ensemble approach costs too much time to find an optimal ensemble. Therefore,a quickly convergent version of selective ensemble algorithm is presented. This algorithm uses convergent SI (swarm intelligence) to find the optimal ensemble with using the C4.5 decision trees classifiers as based learners. Meanwhile,experiments are carried out on UCI data sets. The computer experiments demonstrate that the proposed algorithm achieves high speed, and its accuracy and stability are both higher than Bagging algorithm. It can become a high efficient selective ensemble algorithm.
出处 《计算机技术与发展》 2006年第12期55-57,60,共4页 Computer Technology and Development
关键词 选择性集成 群体智能 蚁群优化算法 BAGGING selective ensemble swarm intelligence ant colony optimization Bagging
  • 相关文献

参考文献11

  • 1Dienerich T G.Machine learning research:Four current directions[J].AI Magazine,1997,18(4):97-136.
  • 2Breiman L.Bagging predicators[J].Machine Learning,1996(2):123-140.
  • 3Sehapire R E.The strength of weak learnability[J].Machine Learning,1990(2):197-227.
  • 4Zhou ZH,Wu J,Tang W.Ensembling neural networks:Many could bebetter than all.Artificial Intelligence,2002,137 (1 -2):239-263.
  • 5Kennedy J,Eberhart R C.Swarm intelligence[M].San Francisco:Morgan Kaufmann,2001.
  • 6Dorigo M,Caro G D.Ant colony optimization:a new metaheuristic[C]//In:Proc.of the 1999 Congress on Evolutionary Computation,Vol 2.Washington:IEEE Press,1999:1470 -1477.
  • 7Dorigo M,Cato G D,Gambardella L M.Ant algorithms for discrete optimization[J].Artificial Life,1999,5 (2):137 -172.
  • 8Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29 -41.
  • 9Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53 -66.
  • 10燕忠,袁春伟.增强型的蚁群优化算法[J].计算机工程与应用,2003,39(23):62-64. 被引量:11

二级参考文献7

  • 1康立山 等.非数值并行计算(第一册)--模拟退火算法[M].北京:科学出版社,1998..
  • 2M Dorigo,V Maniezzo,A Colorni.The ant system:optimlzation by a colony of cooperating agents[J].IEEE Transactions on Systems,Man, and Cybernetics,Part B, 1996 ;26( 1 ) :29--41.
  • 3M Dorigo,L M Gambardella.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation, 1997 ; 1 ( 1 ) :53~66.
  • 4M Dorigo,G Di Caro,L M Gambardella.Ant algorithms for discrete optimization[J].Artitlcial Life, 1999; 5 (2) : 137-172.
  • 5Maniezzo V,A Colomi,M Dorigo.The Ant System Applied to the Quadratic Assignment Problem[R].Technical report IRIDIA/94-28 ,University Libre de Bruxelles,Belgium,1994.
  • 6M Dorigo,G Di Caro.Ant colony optimization:a new meta-heuristic [C].In:Proc 1999 Congress on Evolutionary Computation,1999:1470-1477.
  • 7Y H Song,C S Chou,T J Stonham.Combined heat and power economic by improved ant colony search algofithm[J].Electric Power System Research, 1999 ;52 : 115-121.

共引文献10

同被引文献96

  • 1乔新勇,刘建敏,康崴,曲晓慧.人工神经网络特征优化方法在模式识别中的应用[J].装甲兵工程学院学报,2003,17(1):33-36. 被引量:2
  • 2黄德双.智能计算研究进展与发展趋势[J].中国科学院院刊,2006,21(1):46-52. 被引量:12
  • 3王文磊,徐汀荣.多线程编程技术实现经典进程同步问题[J].计算机技术与发展,2006,16(3):110-112. 被引量:7
  • 4王宇庆,刘维亚.群体智能在图像处理中的应用[J].计算机应用,2007,27(7):1647-1650. 被引量:5
  • 5Karaboga D. An idea based on bee swarm for numerical optimization[R]. [s.l. ]:[s.n. ], 2005.
  • 6Karaboga D, Basturk B. On the performance of artificial bee colony ( ABC ) algorithm [ J ]. Applied Soft Computing, 2008,8 (1) : 687-697.
  • 7Karaboga D, Basturk B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems [ J ]. LNCS : Advances in .Soft Computing : Foundations of Fuzzy. Logic and Soft Computing, 2007, 4529: 789-798.
  • 8梁西安.分层蜂群算法的研究[EB/OL].2009.http://www.paper.edu.cn/index.php/default/releasepaper/content/20091-479.
  • 9Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 10Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.

引证文献3

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部