期刊文献+

一种改进的Apriori挖掘关联规则算法 被引量:11

An Improvement of Apriori Algorithm for Mining Association Rules
下载PDF
导出
摘要 关联规则挖掘可以发现大量数据中项集之间有趣的联系,并已在许多领域得到了广泛的应用。但传统关联规则挖掘很少考虑数据项的重要程度,这些算法认为每个数据对规则的重要性相同,实际挖掘的结果不是很理想。为了挖掘出更具有价值的规则,文中提出了一种加权的关联规则算法,即用频度和利润来标识该项的重要性,然后对经典Apriori算法进行改进。最后用实例对改进后算法进行验证,结果证明改进后算法是合理有效的,能够挖掘出更具价值的信息。 Associatlon rule mining can find interesting associations among a large set of data items, and has been applied widely in many fields. But the importance of data items is seldom considered in the treditional association rules which think every data item has the same importance for rules,actually the result of mining is not good. To explore the more valuable rules,present weighted association rule algorithms that is to use frequentness and profit to express the importance, and then improve the classical Apriori algorithms. Finally use the example to testify the improved algorithms that is reasonable and find much more valuable information.
出处 《计算机技术与发展》 2006年第12期89-90,共2页 Computer Technology and Development
关键词 关联规则 APRIORI算法 权值 association rules Apriori algorithm weight
  • 相关文献

参考文献6

二级参考文献15

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 2黄金才 赵侠 张维明 等.基于聚类的周期关联规则发现算法(CCAR).南京大学学报(自然科学),2002,(38):50-56.
  • 3[1]Agrawal R, Srikant R. Fast algorithms for mining association rules[C]. In Proceeding of the 20th International Conference on Very Large Databases. 1994, 487-499
  • 4[2]Jong S P, Ming S C, Philip S Y. An effective hash based algorithm for mining association rules[C]. In Proceedings of the 1995 ACM SIGMOD International Conference On Management of Data. 1995, 24(2): 175-186
  • 5[3]Jiawei H, Micheline K. Data mining: concepts and techniques[C]. Morgan, 2001, 149-158
  • 6[1]AGRAWAL R, SRIKENT R. Fast algorithms for mining association rules [A]. IBM Research Report. RJ9839 [R]. [s l]: IBM Almaden, 1994.
  • 7[2]ALE J M, ROSSI G H. An approach to discover temporal association rules [A]. SAC′00 [C]. Como: [s n], 2000. 294-300.
  • 8[4]OZDEN B, RAMASWAMY S, SILBERSCHATZ A. Cyclic association rules [R]. NJ: Bell Laboratories Information Sciences Research Center.
  • 9欧阳为民,郑诚,蔡庆生.国际上关联规则发现研究述评[J].计算机科学,1999,26(3):41-44. 被引量:22
  • 10欧阳为民,蔡庆生.在数据库中发现具有时态约束的关联规则[J].软件学报,1999,10(5):527-532. 被引量:54

共引文献87

同被引文献84

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部