期刊文献+

M带双正交多小波的平衡 被引量:1

Balance for M-Band Biorthogonal Multiwavelet
下载PDF
导出
摘要 将平衡多小波的概念引入到M带r重双正交多小波系统,给出了相应的平衡条件,建立了M带r重双正交多尺度函数的若干等价关系,并基于这些等价关系给出构造双正交平衡多尺度函数和多小波的算法.算法在处理离散的多项式信号时,信号既能被低通滤波器保持,又能被高通滤波器取消,同时算法还保持了双正交多小波的对称性,这一点在信号处理方面具有很好的应用价值. The notion of balancing is introduced to M-band biorthogonal muhiwavelet system,the corresponding balanced conditions are presented, and some equivalent propositions of balanced multiscale functions are established. Based on these propositions, algorithms for constructing balanced multiscale function and multiwavelets are proposed. If discrete polynomial signals are dealt with by the algorithm, the signals are preserved by the lowpass filter and canceled by the highpass filter, and the algorithm keeps symmetry of biorthogonal multiwavelet system. The numerical examples show the applied significance in signal processing.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第12期1458-1462,共5页 Journal of Xi'an Jiaotong University
基金 国家民委重点科研基金资助项目
关键词 平衡 双正交多小波 多尺度函数 balancing biorthogonal multiwavelet multiscale function
  • 相关文献

参考文献9

  • 1Lebrun J,Vetterli M.Balanced multiwavelets theory and design[J].IEEE Trans Signal Processing,1998,46(4):1119-1125.
  • 2Lebrun J,Vetterli M.High-order balanced multiwavlets:theory,factorization and design[J].IEEE Trans Signal Processing,2001,49(9):1918-1930.
  • 3Shen Lixin,Tan Hwee Huat.On a family of orthonormal scalar wavelets and related balanced multiwavelets[J].IEEE Trans Signal Processing,2001,49(7):1447-1453.
  • 4Lian Jian'ao,Chui C K.Balanced multiwavelets with short filters[J].IEEE Trans Signal Processing Lett,2004,11(2):75-78.
  • 5Selesnick I W.Balanced GHM-like multiscaling functions[J].IEEE Trans Signal Processing Lett,1999,6(5):111-112.
  • 6杨守志,曹飞龙.伸缩因子为a的r重正交平衡的多小波[J].自然科学进展,2006,16(2):177-182. 被引量:5
  • 7崔丽鸿,程正兴.双正交多小波的平衡及构造[J].工程数学学报,2004,21(1):7-12. 被引量:6
  • 8黄永东,程正兴.α尺度r重双正交共轭滤波器的构造[J].西安交通大学学报,2005,39(10):1155-1159. 被引量:1
  • 9Yang Shouzhi,Cheng Zhengxing,Wang Hongyan.Construction of biorthogonal multiwavelets[J].J Math Anal Appl,2002,276(1):1-12.

二级参考文献30

  • 1[1]Leburn J, Vetterli M. Balanced multiwavelets theory and design[J]. IEEE Trans Signal Processing,1998;46:1119-1124
  • 2[2]Leburn J, Vetterli M. High order balanced multiwavelets[J]. In Proc IEEE int Conf Acoust Speech, Signal Process(ICASSP),1998;12-15
  • 3[3]Leburn J, Vetterli M. Balanced multiwavelets[J]. In Proc IEEE int Cont Acoust Speech Signal Process(ICASSP),1997;3:2473-2476
  • 4[4]Shen Z. Refinable funcation vectors[J]. SIAM J Math Anal,1998;29:234-249
  • 5[5]Hweet Huat Tan, Shen L X, Jo Yew Tham. New biorthogonal multiwavelets for image compression[J]. Signal Process,1990;79:45-65
  • 6[6]Plonka G, Strela V. Construction of multscaling functions with approximation and syetry[J]. SIAM J Math Anal,1998;29:481-510
  • 7[7]Rieder P, Nossek J A. Algebraic design of discrete wavelet transforms, Preprint
  • 8[8]Rieder P, Nossek J A. Smooth multiwavelets bases on two scaling functions[J]. In Proc IEEE Int Symp on Time-Frequency and Time-Scale Analysis,1996;309-312
  • 9[9]Selesnick I W. Multiwavelet bases with extra approximation properties[J]. IEEE Trans Signal Processing,1998;2998-3021
  • 10Lebrun J,Vetterli M.Balanced multiwavelets theory and design.IEEE Trans Signal Process,1998,46(4):1119-1125

共引文献9

同被引文献9

  • 1Plonka G,Strela V.From wavelets to multiwavelets[M]∥Dhlem M,Lyche T,Schumaker L.Mathematical methods for curves and surfaces II.Nashville:Vanderbilt University Press,1998:375-399.
  • 2Lebrun J,Vetterli M.Balanced multiwavelets[J].IEEE Speech and Signal Processing,1997,3(3):2473-2476.
  • 3Lebrun J,Vetterli M.Balanced multiwavelets theory and design[J].IEEE Transactions on Signal Processing,1998,46(4):1119-1124.
  • 4Kessler B.Balanced scaling vectors using linear combinations of existing scaling vectors[M]∥Chui C K,Neamtu M,Schumaker L L.Approximation Theory XI.Brentwood:Nashboro Press,2004:197-208.
  • 5Plonka G.Approximation order provided by refinable function vectors[J].Constructive Approximation,1997,13(2):221-244.
  • 6Lebrun J,Selenick I W.Grobner bases and wavelet design[J].Journal of symbolic computation,2004,37(4):227-259.
  • 7Fritz K.Raising multiwavelet approximation order though lifting[J].SIAM J.MATH.ANAL,2001,32(5):1032-1049.
  • 8Jiang Q T.Matlab routines for sobolev and holder smoothness computations of refinable function[EB/OL].(2001-11-22)[2006-12-14].http:∥www.cs.umsl.edu/jiang/Jsoftware.htm(4).
  • 9崔丽鸿,程正兴.双正交多小波的平衡及构造[J].工程数学学报,2004,21(1):7-12. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部