期刊文献+

心电信号多周期融合特征提取和分类研究 被引量:4

Study of ECG Feature Extraction and Classification Based on Multiple Cardiac Cycle Fusion
下载PDF
导出
摘要 多数现存的心电信号(ECG)分割方法是针对一个心电周期内重要的特征波段而言的,这样的分割方法不能全面反映疾病的综合特征和全貌,特征提取和分类因此受到了影响。为此,提出基于多心电周期融合特征提取研究。文中用不同的ECG分割方法和样本定义得到5个以ARMA系数为特征的向量集,对MIT-BIH数据库中的正常窦性心律(NSR)和心室早期收缩(PVC)分别进行基于Fisher准则和二次判别函数的分类测试。结果表明,基于多心电周期的特征提取能明显地改进分类效果。 Most of existing electrocardiogram (ECG) segmentation methods are based on certain important components that only account for local information in a cardiac cycle. Such segmentation methods are unable to reflect the morphological information, so the feature extraction and classification will be affected and limited. The study of ECG features extracted from multiple cardiac cycles was performed in the research. Five different feature sets were generated using the different ECG segmentation methods and sample definitions, which ARMA coefficients were used as features. The proposed technique was applied to the premature ventricular contraction (PVC) and normal sinus rhythm (NSR) obtained from MIT-BIH database. Two different classifiers were employed in current research, namely Fisher criterion and quadratic discrimination function (QDF) based classifiers. The experimental results show the features extracted from multiple cardiac cycles classify better than that of single cardiac cycle.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第6期645-649,共5页 Chinese Journal of Biomedical Engineering
基金 浙江省自然科学基金资助项目(Y104284) 浙江省教育厅科研计划项目(0050606)。
关键词 ECG分割 多心电周期 特征提取 分类 ECG segmentation multiple cardiac cycles feature extraction classification
  • 相关文献

参考文献14

  • 1Sun Y,Chan KL,Krishnan SM.Life-threatening ventricular arrhythmia recognition by nonlinear descriptor[J].Biomed Eng Online,2005,4(1):6.
  • 2Coast DA,Stren RM,Cano GG,et al.An approach to cardiac arrhythmia analysis using hidden markov models[J].IEEE Trans Biomed Eng,1990,37(9):826-836.
  • 3Finelli CJ.The time-sequenced adaptive filter for analysis of cardiac arrhythmias in intraventricular electrograms[J].IEEE Trans.Biomed Eng,1996,43(8):811-819.
  • 4Owis MI.Abou-Zied AH.Youssef AB,Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classication[J].IEEE Trans Biomed Eng,2002,49(7):733-736.
  • 5Minami KC,Nakajima H,Toyoshima T.Real-time discrimination of ventricular tachyarrythmia with Fourier-transform neural network[J].IEEE Trans Biomed Eng,1999,46(2):179-185.
  • 6Fotiadis DI,Tsipouras MG.Automatic arrhythmia detection based on time and time-frequency analysis of heart rate variability[J].Comput Methods Programs Biomed,2004,74(2):95-108.
  • 7Barro S,Fernandez-Delgado M,Vila-Sobrino JA,et al.Classifying multichannel ECG patterns with an adaptive neural network[J].Engineering in Medicine and Biology Magazine,1998,17 (1):45 -55.
  • 8Ge DF.Srinivasan N,Krishnan SM.Cardiac arrhythmia classification using autoregressive modeling[J].Biomedical Engineering Online,2002,1:5.
  • 9葛丁飞,夏顺仁.AR模型在远程心电诊断中的应用[J].中国生物医学工程学报,2004,23(3):222-229. 被引量:8
  • 10Lin KP,Chang WH.QRS feature extraction using linear prediction[J].IEEE Trans Biomed Eng,1989,36 ():1050-1055.

二级参考文献20

  • 1Jalaleddine SMS, Hutchens CG, Strattan RD, et al. ECG data compression techniques-a unified approach[J]. IEEE Trans on BME.1990,37:329-343.
  • 2Duda RO, Hart PE. Pattern classification[M]. United States of america: A wiley-Interscience Publication, John Wiley & Sons. INC 2001,219-223.
  • 3Caswell SA, Kluge KS, Chiang CMJ. Pattern recognition of cardiac arrhythmias using two intracardiac channels[C]. Proc Comp Cardiol. 1993,181-184.
  • 4Zhou SH, Rautaharju PM, Calhoun HP. Selection of a reduced set of parameters for classification of ventricular conduction defects by cluster analysis[C]. Proc Comp Cardiol. 1993,879-882.
  • 5Minami KC, Nakajima H, Toyoshima T. Real-time discrimination of ventricular tachyarrythmia with Fourier-transform neural network[J]. IEEE Trans Biomed Eng. 1999,46:179-185.
  • 6Afonoso VX, Tompkins WJ. Detecting ventricular fibrillation: Selecting the appropriate time-frequency analysis tool for the application[J]. IEEE Eng Med Biol Mag. 1995,14:152-159.
  • 7Zhang XS, Zhu YS, Thakor NV, et al. Detecting ventricular tachycardia and fibrillation by complexity measure[J]. IEEE Trans Biomed Eng. 1999,46:548-555.
  • 8Chen SW. Two-stage discrimination of cardiac arrhythmias using a total least squares-based Prony modeling algorithm[J]. IEEE Trans Biomed Eng. 2000,47:1317-1326.
  • 9Arnold M, Miltner WHR, Witte H. Adaptive AR modeling of nonstationary time series by means of Kalman filtering[J]. IEEE Trans Biomed Eng. 1998,45:553-562.
  • 10Ham FM, Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP[J]. IEEE Trans Biomed Eng.1996,43:425-430.

共引文献7

同被引文献46

  • 1明东,万柏坤,胡勇,王以忠.混沌动力学在心率变异分析中的应用[J].航天医学与医学工程,2005,18(6):442-445. 被引量:3
  • 2李霞,白净,金勋,李春雨,王亚东.基于非线性方法的心血管亚健康状况定量评测研究[J].国际生物医学工程杂志,2006,29(6):321-324. 被引量:7
  • 3杨荣峰,魏义祥.多级自组织映射用于心电信号QRS波群聚类[J].清华大学学报(自然科学版),2007,47(3):385-388. 被引量:1
  • 4瞿晓,陈伟,葛丁飞.一种计算简单的心电诊断算法的研究[J].传感技术学报,2007,20(4):731-734. 被引量:2
  • 5Stein PK, Lundequam EJ, Oliveira LPJ, et al. Circadian and ultradian rhythms in cardiac autonomic modulation[ J]. IEEE Eng in Medicine and Biology Magzine, 2007,4: 14- 18.
  • 6Sassi R, Cerutti S, Hnatkova K, et al. HRV scaling exponent identifies postinfarction patients who might benefit from prophylactic treatment with amiodarone [ J ]. IEEE Trans on Biomedical Eng, 2006, 53(1): 103- 110.
  • 7Ding Hang, Crozier S, Wilson S. A new heart rate variability analysis method by means of quantifying the variation of nonlinear dynamic patterns [J]. IEEE Trans on Biomedical Eng, 2007, (9) : 1590 - 1597.
  • 8Ferrario M, Signorini MG, and Cerutti S. Complexity analysis of 24 hours heart rate variability time series [ A ]. In : Proceedings of the 26th Annual Intematianal Conference of the IEEE EMBS [ C ]. USA: IEEE Press, 2004. 3956-3959.
  • 9Kolmogorov AN. Three approaches to the quantitative definition of information[J]. Problems Inform Transmission, 1965, 1: 3- 11.
  • 10Lempel A, Ziv J. On complexity of finite sequences [ J ]. IEEE Trans Inform Theory, 1976, 22:75 - 88.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部