期刊文献+

基于Contourlet变换的子带自适应图像去噪 被引量:3

Subband-adaptive image denoising based on contourlet transform
下载PDF
导出
摘要 Contourlet变换是继小波变换之后的又一新变换。由于Contourlet变换的多尺度和多方向特性,能有效地捕获到自然图像中的轮廓,并对其进行稀疏表示.本文提出一种基于Contourlet变换子带自适应图像的新颖去噪算法。该算法核心是估计无噪期望信号的概率。即结合无噪子带系数的广义Laplacian模型和加性高斯白噪声的概率估计,分析每个子带信号概率为固定的情况。实验结果显示这种新的子带自适应图像去噪算法优于Bayesian wavelet shrinkage和ContourletHMT算法。 The contourlet transform is a new extension of the wavelet transform in two dimension. Because of its multiscale and directional properties, the contourlct transform can effectively capture the smooth contours that are the dominant features in natural images with only a small number of coefficients. We proposed a novel contourlet domain denoising method for subband - adaptive image denoising. The core of our approach is estimation of the probability that a given coefficient contains a significant noise - free component, which we call "signal of interest". In this respect we analyze case where the probability of signal presence is fixed per subband. All the probabilities are estimated assuming generalized Laplacian prior for noise - free subband data and additive white Gaussian noise. The experiment results show that the new subband - adaptive shrinkage denoising outperforms the Bayesian wavelet shrinkage and the cootourlet HMT.
作者 王忠华
出处 《南昌航空工业学院学报》 CAS 2006年第2期21-23,共3页 Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition)
关键词 图像去噪 CONTOURLET变换 广义似然比 image denoising,contourlet transform, generalized likelihood ratio
  • 相关文献

参考文献7

  • 1Shapiro J M.Embedded image coding using zerotree of wavelet coefficients[J].IEEE Transactions On Signal Processing,1993,41(12):3445~3462.
  • 2Wang Shengqian,Zhou Yuanhua and Zou Daowen.Adaptive shrinkage denoising using the neighborhood characteristic[J].Electronics Letters,2002,11(38):185-186.
  • 3Wang Shengqian,Zou Daowen and Deng Chengzhi.Wavelet shrinkage threshold based on image singularity[J].the third international conference on wavelet analysis and its applications,2004,Chongqing.
  • 4Minh N.Do,Martin Vetterli.The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 5S.G.Chang,B.Yu,and M.Vetterli.Adaptive wavelet thresholding for image denoising and compression.IEEE Transaction On Image Processing,2000,9(9):1532-1546.
  • 6Aleksandra Pizurica and Wilfried Philips.Estimating probability of presence of a signal of interest in multiresolution single-and multiband image denoising.IEEE Transactions On Image Processing,2006,15(3):654-665.
  • 7Duncan D.-Y.Po and Minh N.Do.Directional Multiscale Modeling of Images using the Contourlet Transform[J].IEEE Transactions Image on Processing,2006,15(6):1610-1620.

同被引文献68

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部