期刊文献+

超细粉体分级填料塔的结构设计 被引量:1

Structure design of super-fine powder classification tower with structured packing
下载PDF
导出
摘要 从气固流态化原理出发介绍了分级填料塔的工作原理,借助波纹填料塔的一些计算方法,进行了超细粉体分级填料塔的结构设计.固体颗粒由于颗粒大小的不同,其重量亦不同,使其上升的曳力亦不同,故在固定风速下,不同粒径的颗粒在分级填料塔内由上至下实现分层,团聚的颗粒受到填料的不断冲击而达到分散,提高了整体的分级效果.将该设备用于固体颗粒的分级,取得了显著的分级效果,展现了广阔的应用前景. The principle of gas solid fluidization and classification towers are introduced. Based on the calculation method of structured packing towers, the structure design of a classification tower with structured packing was made. Solid particles are separated into different fractions based on there size. Usually, there are three main important forces acting on particles in a classification tower: gravity, flotage and dragging force. If the particles are small, the flotage and dragging force will predominate and more particles with the air stream will go into the fine fraction. If the gravity of particles is greater than the flotage and dragging force, particles will deflected into the coarse fraction. As a result, the coarse fraction were went into the lower part of the tower, the reunited particles were distributed when they collided with structured packing, thereby, the classification towers has a ideal classification effect. It is demonstrated that the classification tower has a ideal classification capability from experiments.
出处 《工程设计学报》 CSCD 北大核心 2006年第6期406-409,共4页 Chinese Journal of Engineering Design
关键词 气固流态化 分级 分级填料塔 gas-solid fluidization classification classification tower with structured packing
  • 相关文献

参考文献9

二级参考文献59

  • 1张民权,莫炳禄.旋风反应器内压力降及分离效率的计算及测定[J].化学工程,1995,23(4):33-37. 被引量:13
  • 2官国清,余华瑞,石炎福.液-固流化床中颗粒群的沉降特性[J].高校化学工程学报,1996,10(1):75-79. 被引量:1
  • 3肖纪美.抗断裂的材料设计[J].金属学报,1997,33(2):113-125. 被引量:15
  • 4[2]Fayed M E,Otten L.粉体工程手册,第14章,沉降.化学工业出版社,1992.
  • 5[3]Davidison J F,Harrison D.流态化,第1章,起始流态化和散式流态化系统IV散式相的膨胀.科学出版社,1981.
  • 6[4]Foscolo P U,Gibilaro L G, Waldram S P.A unified model for particulate expansion of fluidised beds and flow in fixed porous media.Chem Eng Sci, 1983,251.
  • 7王宪军 彭成中.液-固流化床的流化特性.石油化工,1988,:296-300.
  • 8Gelprin N I, Einstein V G. Fluidzation, London : Aoademio Press, 1971.
  • 9Zennosuke Tanaka, Teruo Takahashi. Fluidization and Particle Systems, Recent Advances ( AICHE Symposium Series ), Published by American Institute of Chemical Engineers, 757 - 763.
  • 10Lawn B R,Wilshaw T R.脆性固体断裂力学.陈颐,尹祥础译.北京:地震出版社,1985.

共引文献51

同被引文献4

  • 1KOLACZ J.Investigating flow conditions in dynamic air classification[J].Minerals Eng,2002,15:131-138.
  • 2BHASKER C.Numerical simulation of turbulent flow in complex geometries used in power plants[J].Advances in Engineering Software,2002,33(1):71-83.
  • 3JIAO Jin-yu,ZHENG Ying.Study of the separation efficiency and the flow field of a dynamic cyclone[J].Separation and Purification Technology,2006,49:157-166.
  • 4徐政,盖国胜,卢寿慈.气力分级机叶片长度对分级区流场的影响的数值模拟研究[J].中国粉体技术,1999,5(6):9-12. 被引量:6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部