期刊文献+

直流电测井响应的二阶几何因子逼近计算 被引量:1

Approximate Computation of Electrode type Resistivity by 2nd Order Geometrical Factor in Inhomogeneous Medium
下载PDF
导出
摘要 张庚骥等:直流电测井响应的二阶几何因子逼近计算,测井技术,1996(5)20,320~324。对直流电测井几何因子理论及逐次逼近解法进行了进一步的推导论证,同时给出了电极条件下二阶直流电几何因子逼近的具体计算方法和数值分析结果。计算结果显示,较一阶几何因子逼近结果有明显改进,已经基本接近真值,进一步证明了直流电几何因子理论在电测井数值模拟方面的有效性。 On the basis of the successive approximation method and the geometrical factor theory proposed by Zhang Gengji, some new modifications are presented in this paper in order to make the computation of the electrode type resistivity accurate and efficient. Thus, the 2nd order geometrical factor is used to meet the need of accuracy. However, when it is treated as the integrand, the computation of five dimensional numerical integral is involved, which is known to be difficult, As a result, one method employed to convert 5D numerical integration into 2D one solvesthe problem and accelerates the computation of electrical logging response. At last, two simple examples are provided, and the comparison between the result by the first order geometrical factor and that by the second order geometrical factor shows that the latter approximates the analytical solution much closer than the former. Therefore, the geometrical factor theory and the successive approximation method could be workable in the simulation and inversion of electric logging.
作者 张庚骥 高杰
出处 《测井技术》 CAS CSCD 1996年第5期320-324,329,共6页 Well Logging Technology
关键词 电测井 几何因子理论 逐次逼近解法 二阶逼近 electric logging geometrical factor theory successive approximation method second order approximation numerical analysis
  • 相关文献

参考文献4

  • 1张庚骥.电测井Green函数的Taylor展开[J]地球物理学报,1987(01).
  • 2张庚骥.关于逐次逼近解法收敛性的讨论[J]地球物理学报,1984(06).
  • 3梁(汲金)廷.对直流电法测井几何因子的评论[J]地球物理学报,1981(03).
  • 4张庚骥.非均匀介质电场的逐次逼近解法和直流电测井的几何因子[J]地球物理学报,1980(02).

同被引文献37

引证文献1

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部