期刊文献+

比例延迟微分方程组Rosenbrock方法的渐近稳定性 被引量:1

Asymptotic Stability of Rosenbrock Methods for System of Pantograph Equation
下载PDF
导出
摘要 讨论用一类变步长Rosenbrock方法求解线性比例延迟微分方程组的渐近稳定性,证明了在无穷远点严格稳定的变步长Rosenbrock方法能够保持原线性系统的渐近稳定性。数值试验进一步验证了算法的理论分析的正确性。 The asymptotic stability of Rosenbrock methods with variable stepsize for the linear system of pantograph equation was discussed, and it is shown that strictly stable at infinity Rosenbrock method with variable stepsize can preserve the asymptotic stability of underlying linear system. Numerical experiment further confirms the theoretical results of numerical analysis.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第12期3365-3368,共4页 Journal of System Simulation
关键词 线性比例延迟微分方程组 ROSENBROCK方法 渐近稳定性 变步长 linear system of pantograph equation Rosenbrock methods asymptotic stability variable stepsize
  • 相关文献

参考文献15

  • 1M D Buhmann,A Iserles.On the dynamics of a discretized neutral equation[J].IMAJ.Numer.Anal (S1464-3642),1992,12:339-363.
  • 2M D Buhmann,A Iserles.Stability of the discretized pantograph differential equation[J].Math.Comp (S0025-5718),1993,60:575-589.
  • 3Y K Liu.Stability analysis of -methods for neutral functional-differential equations[J].Numer.Math (S0945-3245),1995,70:473-485.
  • 4Y K Liu.On the -methods for delay differential equations with infinite lag[J].J.Comput.Appl.Math (S0377-0427).1996,71:177-190.
  • 5A Bellen,N Guglielmi,L Torelli.Asymptotic stability proporties of -methods for the pantograph equations[J].Appl.Numer.Math (S0168-9274).1997,24:279-273.
  • 6T Koto.Stability analysis of Runge-kutta methods for generalized pantograph equations[J].Numer.Math.(S0945-3245),1999,84:233-247.
  • 7C M Huang,S Vandewalle.Discretized stability and error growth of non-autonomous pantograph equation[J].SIAM J.Numer.Anal.(S1095-7170),2005,42(15):2020-2042.
  • 8R Pche.An L-stable Rosenbrock methods for stap-by-stap time integration in structural dynamics[J].Comput.Meth.Appl.Mech.Eng (S0045-7825),1995,126:343-354.
  • 9J J Zhao.The stability of Rosenbrock methods for the pantograph equations[C]//第九届全国微分方程数值方法暨第六届全国仿真算法学术会议论集,2004:32-39.
  • 10E Hairer,G Wanner.Solving ordinary differential equations II,Stiff and differential algebraic problems[M].Springer,Berlin,1993.

二级参考文献4

  • 1Fei Jinggao,Chin J Syst Eng Electron,1993年,4卷,4期,53页
  • 2K. J. In ’t Hout. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J] 1992,BIT(4):634~649
  • 3Marino Zennaro. P-stability properties of Runge-Kutta methods for delay differential equations[J] 1986,Numerische Mathematik(2-3):305~318
  • 4黄自力,刘德贵.一类并行隐式Runge-Kutta方法的A稳定性分析[J].系统工程与电子技术,1991,13(3):25-30. 被引量:5

共引文献24

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部