期刊文献+

扶手椅型单壁碳纳米管生长机理的研究 被引量:1

Theoretical Study on the Growth Mechanism of Armchair Single-walled Carbon Nanotube
下载PDF
导出
摘要 用Gaussian03程序中的AMI方法对扶手椅型单壁碳纳米管的生长机理进行了研究.结果表明,若碳纳米管生长的碳源是C2自由基,则有一条反应途径可能是:C2自由基首先与碳纳米管的开口端形成一个中间体,然后该中间体经过一个过渡状态,形成产物;从(3,3),(4,4),(5,5)到(6,6),其生长反应的活化能逐渐降低.同时研究发现,活化能的高低与碳纳米管共轭程度的大小有关,碳纳米管的共轭程度越大,活化能越低;在靠近新形成的六元环的两侧,碳纳米管可能优先继续生长. The growth mechanism of armchair single-walled carbon nanotube has been studied theoretically by AM1 method as implemented in Gaassian03 program. The following results were obtained. (l) Let C2 radicals be the carbon source for the growth of the carbon nanotube, then the most likely growth mechanism would be as follows. An intermediate is formed firstly by the direct addition of C2 radical to the open end of the carbon nanotube without an energy barrier, then via a transition state the reaction produces the product, i.e., C2 becomes the component of the hexagon of the nanotube. (2) From (3,3) to (6,6), the activation energy decreases (from 66.8 to 46.1 kJ·mol ^-1), whereas the conjugation of the nanotube increases. (3) The distribution of the frontier molecular orbitals indicates that the two edges of the newly formed hexagon maybe grow easily.
机构地区 南开大学化学系
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2006年第11期1388-1392,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20303010)资助项目
关键词 扶手椅型单壁碳纳米管 生长机理 C2自由基 过渡态 AM1 Armchair single-walled carbon nanotube, Growth mechanism, C2 radical, Transition state, AM1
  • 相关文献

参考文献18

  • 1Tans,S.J., Verschueren,A.R.M., Dekker,C.Nature,1998,393:49
  • 2Bachtold,A., Hadley,P., Nakanishi,T., Dekker.C.Science,2001,294:1317
  • 3Kong,J., Franklin,N.R., Zhou,C., Chapline,M.G., Peng,S., Cho,K., Dai,H.J.Science,2000,287:622
  • 4Besteman,K., Lee,J.O., Wiertz,F.G.M., Heering,H.A., Dekker,C.Nano.Lett.,2003,3(6):727
  • 5Laila,S.H.I., Bernhard,B., Itamar,W.Angew.Chem.Int.Ed.,2005,44:78
  • 6胡平安,王贤保,刘云圻,朱道本.碳纳米管的最新制备技术及生长机理[J].化学通报,2002,65(12):794-799. 被引量:10
  • 7段小洁,何茂帅,王璇,张锦,刘忠范.表面上单壁碳纳米管的可控生长[J].科学通报,2004,49(23):2377-2385. 被引量:3
  • 8Kiang,C.H.J.Chem.Phys.,2000,113(11):4763
  • 9Tian,Y.J., Hu,Z., Yang,Y., Wang,X.Z., Chen,X., Xu,H., Wu,zQ., Ji,W.J., Chen,Y.J.Am.Chem.Soc.,2004,126:1180
  • 10Feng,D., Kim,B., Arne,R.J.Phys.Chem.B,2004,108:17369

二级参考文献57

  • 1胡文平 刘云圻 曾鹏举 周书琴 朱道本.化学通报,2002,2:2-6.
  • 2Iijima, S. Nature 1991, 354, 56-58.
  • 3Klein, D. J.; Seitz, W. A.; Schmalz, T. G. Nature 1986, 323, 705-708.
  • 4Haddon,R C . Pure & Appl. Chem. 1986, 58, 137-142.
  • 5Haddon, R. C. Science 1993, 261, 1545-1550.
  • 6Erkoc, S ; Tü rker, L Physica FA, 1999, 192-195.
  • 7Jishi, R A ; Bragin, J ; Lou, L. Phys. Rev. B 1999, 59, 9862-9865.
  • 8Philip, G C ; Avouris, P. Scientific American 2001, 3, 28-35.
  • 9Chen, J; Haddon M ; Hu, A. H. Science 1998, 282, 95-98.
  • 10Kelly, K E; Chiang, I W ; Michkelson, E. T. Chent Phys. Lett. 1999, 313, 245-250.

共引文献13

同被引文献19

  • 1Shibuta Y,Maruyama S.Chem Phys Lett,2003,382(3-4):381.
  • 2Ding F,Rosén A,Blotom K.Chem Phys Let t,2004,393(4-6):309.
  • 3Esfaijani K,Gorjizadeh N,Nasrollahi Z.Comput Mater Sci,2006,36(1-2):117.
  • 4Grujicic M,Cao G,Gersten B.Mater Sci Eng B,2002,94 (2-3):247.
  • 5Andriotis A N,Menon M,Froudakis G.Phys Rev Lett,2000,85(15):3193.
  • 6Ren W C,Li F,Cheng H M.J Phys Chem B,2006,110(34):16941.
  • 7Tersoff J.Phys Rev Lett,1988,61(25):2879.
  • 8Tersoff J.Phys Rev B,1989,39(8):5566.
  • 9Tersoff J.Phys Rev B,1988,37(12):6991.
  • 10Tersoff J.Phys Rev Lett,1986,56(6):632.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部