期刊文献+

基于独立负样本集和SVM的人脸确认算法 被引量:1

A Face Verification Algorithm Based on Negative Independent Sample Set and SVM
下载PDF
导出
摘要 在许多人脸确认应用领域,例如人脸计算机安全登录系统中,没有用于SVM训练的人脸数据库可以提供,在现有基于SVM的人脸确认算法的基础上,根据实际应用的需求,提出了一种新的基于独立负样本集和SVM的人脸确认算法,该方法对注册的用户图像通过眼睛抖动的方法生成足够多的正样本,利用FLD技术进行特征提取,并利用基于Rank的一对多的识别方法去除同类项,解决了训练样本与负样本类别冲突问题·正负样本送SVM进行训练可以得到相应的SVM模型,对于待确认的人脸图像就可以采用SVM进行验证了·对SCUT人脸数据库的测试表明:足够数量的负样本能够保证较低的FAR,且支持向量的数量不会随着负样本集的数量增长而增长·应用这个算法,实现了一个计算机安全登录系统· In many face verification applications, there are no face database for SVM training, such as PC face security logging-on system. A new face verification algorithm based on negative independent sample (NIS) set is presented, by analyzing existing SVM-based face verification algorithm and the demand for practical application. The approach generates enough positive samples by means of wobbling eyes of the user's registered image, employs FLD to extract feature, and deletes uniform samples in NIS with the rank-based FLD face recognition method. This scheme can resolves the classification conflict problem between the negative and the positive sample sets. After the negative and positive samples are sent to SVM for training, the SVM can do face verification for face image. The experiments on the SCUT face database indicate that the proposed method can ensure lower FAR if the negative samples are large enough, and the number of support vectors does not increase alone with the number of negative samples. A PC security logging-on system has been developed based on this face verification algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第12期2138-2143,共6页 Journal of Computer Research and Development
基金 广东省自然科学基金项目(04020131) 广东省科技计划基金项目(109-B2041040)~~
关键词 独立负样本集(NIS) 支持向量机(SVM) 人脸确认 negative independent sample set (NIS) support vector machine (SVM) face verification
  • 相关文献

参考文献12

  • 1崔国勤,李锦涛,高文,焦锋.基于支持向量机的人脸识别方法[J].计算机科学,2003,30(4):11-15. 被引量:13
  • 2Guodong Guo,Stan Z Li,Kap Luk Chan.Support vector machines for face recognition[J].Image and Vision Computing,2001,19(9-10):631-638
  • 3庄莉,艾海舟,徐光祐.基于视频的人脸验证[J].电子学报,2002,30(8):1222-1225. 被引量:2
  • 4K Jonsson,J Kittler,Y P Li,et al.Support vector machines for face authentication[J].Image and Vision Computing,2002,20(5-6):369-375
  • 5Juergen Luettin,Gilbert Maitre.Evaluation protocol for the XM2FDB database(Lausanne Protocol)[C].IDIAP Communication,Switzerland,1998
  • 6陶亮,庄镇泉.一种基于个人身份认证的正面人脸识别算法[J].中国图象图形学报(A辑),2003,8(8):860-865. 被引量:15
  • 7刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 8边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 9David S Bolme,J Ross Beveridge,Marcio Teixeira,et al.The CSU face identification evaluation system-its purpose,features and structure[C].The 3rd Int'l Conf on Computer Vision Systems,Graz,2003
  • 10Xiaoming Liu,Tsuhan Chen,B V K Vijaya Kumar.Face authentication for multiple subjects using eigenflow.Pattern Recognition,2003,36(2):313-328

二级参考文献114

  • 1容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.
  • 2Vapnik V. The nature of statistical learning theory. Springer,New York, 1995.
  • 3Turk M, Pentland A. EigenIaces for recognition. J. Cognitive Neuroscience, 1991,3(1) ; 71~86.
  • 4Kirby M,Sirovich L.Application of the Karhunen-Loève Procedure fot the characterization of human faces.IEEE Trans.on Pattern Analysis and Machine Intelligence,1990,12(1):103~108 Ries F,Nagy B S Z.Function Analysis(Vol 2)泛函 分析讲义(第二卷).科学出版社,1980.110~116.
  • 5Collobert R,Bengio S. Support Vector Machines for Large-Scale Regression Problems ,IDIAP-RR-00-17,2000.
  • 6Snika A,Scholkopf V. A tutorial on support vector regression.NeuroColt 2 : [TR 1998-03]. 1998.
  • 7Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods,MIT press, 1999. 271~284.
  • 8Shevade S K, et al. Improvements to SMO Algorithm for SVM Regression.- [Technical Report CD-99-16].
  • 9Weston J, Watkins C. Multi-class Support Vector Machines:[Techical Report CSD-TR-9804].
  • 10Training Support Vector Machines: An Application to Face Detection.

共引文献280

同被引文献8

  • 1柴秀娟,山世光,高文,陈熙霖.基于样例学习的面部特征自动标定算法[J].软件学报,2005,16(5):718-726. 被引量:15
  • 2Hu Fengsong,Lin Yaping,Zou Beiji et al.3D Face Reconstruction Based on Candide-3 for Face Recognition[C].China:The 2008 International Congress on Image and Signal Processing,CISP2008(4):158.
  • 3Jonsson K,Kittler J,Li Y P,et al.Support vector machines for face authentication[J].Image and Vision Computing,2002,20(5-6):369-375.
  • 4Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:A New Approach to Appearance-based Face Representation and Recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 5Shiguang Shan,Bo Cao,Wen Gao,et al.Extend Fisherfaces for Face Recognition from a Single Example Image per Person[J] ,IEEE International Symposium on Circuits and Systems,2002,2:8184,2002(IEEE ISCAS2002).
  • 6Zhang Daoqiang,Chen Songcan,Zhou Zhihua.A New Face Recognition Method based on SVD Perturbation for Single Example Image per Person[J] ,Applied Mathematics and Computation 2005,163(2):895.
  • 7Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines and Other Kernel-bases Learning Methods[M].London;Cambridge University Press,2000:1-28.
  • 8陶亮,庄镇泉.一种基于个人身份认证的正面人脸识别算法[J].中国图象图形学报(A辑),2003,8(8):860-865. 被引量:15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部