期刊文献+

关于完全3-部图K_(1,6,n)的交叉数 被引量:9

On the Crossing Number of the Complete Tripartite K_(1,6,n)
原文传递
导出
摘要 早在上世纪五十年代,Zarankiewicz猜想完全2-部图Km,n(m≤n)的交叉数为[m/2][m-1/2][n/2][n-1/2](对任意实数x,[x]表示不超过x的最大整数).目前这一猜想的正确只证明了当m≤6时成立.本文主要证明了若Zarankiewicz猜想对m=7成立,则完全3-部图K1,6,n的交叉数为9[n/2][n-1/2]+6[n/2]. Earily in the fifties of the 19th century, Zarankiewicz conjectured that the crossing number of the complete partite graph Km,n (m≤ n) is [m/2][m-1/2][n/2][n-1/2](for any real number x, [x] denotes the maximum integer that is no more than x). At present, the truth of this conjecture has been proved for the case m ≤ 6. In this papaer we prove that if Zarankiewicz's conjecture is true for the case m = 7, then the crossing number of the complete tripartite graph K1,6,n is 9[n/2][n-1/2]+6[n/2].
出处 《应用数学学报》 CSCD 北大核心 2006年第6期1046-1053,共8页 Acta Mathematicae Applicatae Sinica
基金 湖南省教育厅资助科研项目(05A037 06C515).
关键词 画法 交叉数 完全2-部图 完全3-部图 graph drawings crossing number complete partite graph complete tripartite graph
  • 相关文献

参考文献19

  • 1Bondy J A,Muty U S R.Graph Theory with Appplication.London:Macmillan Press,1976
  • 2Turan P.A Note of Welcome.J.Graph Theory,1977,1:7-9
  • 3Zarankiewicz K.On a Problem of P.Turan Concerning Graphs.Found.Math.,1954,41:137-145
  • 4Guy R K.The Decline and Fall of Zarankiewicz's Theorem.In:F.Harary(ed.),Proof Techniques in Graph Theory.New York:Academic Press,1969,63-69
  • 5Garey M R,Johnson D S.Crossing Number is NP-complete.SIAM J.Algebraic Discrete Methods,1983,4:312-316
  • 6Beineke L W,Ringeisen R D.On the Crossing Numbers of Products of Cycles and Graphs of order Four.J.Graph Theory,1980,4:145-155
  • 7Klesc M.On the Crossing Number of Cartesian Products of Stars and Paths or Cycles.Math.Slovaca,1991,41:113-120
  • 8Klesc M.The Crossing Numbers of Products of Paths and Stars with 4-vertex Graphs.J.Graph Theory,1994,18:605-614
  • 9Klesc M.The Crossing Number of Certain Cartesian Products.Discuss.Math-Graph Theory,1995,15:5-10
  • 10Marian Klesc.The Crossing Numbers of Cartesian Products of Paths with 5-vertex Graphs.Discrete Mathematics,2001,233:353-359

同被引文献39

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部