摘要
早在上世纪五十年代,Zarankiewicz猜想完全2-部图Km,n(m≤n)的交叉数为[m/2][m-1/2][n/2][n-1/2](对任意实数x,[x]表示不超过x的最大整数).目前这一猜想的正确只证明了当m≤6时成立.本文主要证明了若Zarankiewicz猜想对m=7成立,则完全3-部图K1,6,n的交叉数为9[n/2][n-1/2]+6[n/2].
Earily in the fifties of the 19th century, Zarankiewicz conjectured that the crossing number of the complete partite graph Km,n (m≤ n) is [m/2][m-1/2][n/2][n-1/2](for any real number x, [x] denotes the maximum integer that is no more than x). At present, the truth of this conjecture has been proved for the case m ≤ 6. In this papaer we prove that if Zarankiewicz's conjecture is true for the case m = 7, then the crossing number of the complete tripartite graph K1,6,n is 9[n/2][n-1/2]+6[n/2].
出处
《应用数学学报》
CSCD
北大核心
2006年第6期1046-1053,共8页
Acta Mathematicae Applicatae Sinica
基金
湖南省教育厅资助科研项目(05A037
06C515).
关键词
图
画法
交叉数
完全2-部图
完全3-部图
graph
drawings
crossing number
complete partite graph
complete tripartite graph