期刊文献+

平面弹性力学问题的混合元法的泡函数稳定性及其后验误差估计 被引量:1

Bubble Stabilization and Posteriori Error Estimate of MFE Method for Plane Elasticity Problems
下载PDF
导出
摘要 该文讨论平面弹性力学问题的混合元法的泡函数稳定性,并导出基于简化的稳定化格式的一种先验误差估计和后验误差估计.这种简化的稳定化格式较通常的格式节省自由度. In this paper, a bubble stabilization of mixed finite element (MFE) approximation for plane elasticity problems is discussed, and a priori estimate and a posteriori estimate based on a simplified stabilized formulation are derived. This simplified stabilized formulation can save more freedom degrees than usual formulations.
作者 罗振东
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第6期906-916,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10471100 40437017) 北京市自然科学基金(1042005) 北京交通大学科技基金资助
关键词 混合有限元法 平面弹性力学问题 先验误差估计和后验误差估计 稳定化格式. Mixed finite element Plane elasticity problems Priori estimate and a posteriori estimate Stabilized formulation.
  • 相关文献

参考文献9

  • 1Alonso A. Error estimators for the mixed method. Numer Math, 1996, 74:385-395
  • 2Arnold D N, Brezzi F, Douglas Jr J. A new finite element for plane elasticity. Jap J Appl Math, 1984,104(1): 347-367
  • 3Arnold D N, Douglas Jr J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45:1-22
  • 4Brezzi F, Douglas Jr J, Marini L D. Recent Results oil Mixed Finite Element Methods for Second Order Elliptic Problems. In Vistas in Applied Mathematics, Numerical Analysis, Atmospheric Sciences and Immunology. New York: Springer, 1986
  • 5Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer, 1991
  • 6Carstensen C. A posteriori error estimates for mixed finite element method. Math Comp, 1997, 66:465-476
  • 7Carstensen C, Dolzmann G. A posteriori error estimates for mixed FEM in elasticity. Numer Math, 1998,81:187-209
  • 8Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978
  • 9Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO Numer Anal, 1980, 14:249-277

同被引文献8

  • 1罗振东,刘儒勋.弹性力学问题的混合有限元分析[J].中国科学技术大学学报,1996,26(3):348-352. 被引量:2
  • 2Fraejies de Veubeke B. Displacement and Equilibrium Models the Finite Element Method, Stress Analy- sis//Zienkiewicz O C, Holister G S, eds. New York: Wiley, 1965:145-197.
  • 3Johnson C, Mercier B. Some Equilibrium finite element methods for two-dimensional problems. Numer Math, 1978, 30:103-116.
  • 4Pikaranta J, Stenberg R. Analysis of some mixed finite element methods for plane elasticity equations. Math Comp, 1983, 41(164): 399-423.
  • 5Raviart P A, Thomas J M. A Mixed Finite Element Method for 2nd-order Elliptic Problems. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1977:292-315.
  • 6Arnold D N, Douglas Jr J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity. Numer Math, 1984, 45:1-22.
  • 7Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978.
  • 8Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO Numer Anal, 1980, 14:249-277.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部