摘要
设H为复Hilbert空间,B(H)为H上算子范数不大于1的有界线性算子集,E=E*为B(H)中的两两可换子集.作者用E和E上的解析算子函数分别取代了复单位圆盘和复单位圆盘上的解析函数,在算子Bloch型空间上定义并讨论了加权复合算子的有界性,得到了Bα到Bβ的加权复合算子有界的充分必要条件.
Let H denote a complex Hilbert space, B (H)be bounded linear operators set on H whose norm is not more than 1, E = E^* be subset of B (H) whose elements are commute with each other. The author takes place of complex unit disc and analytic function in it by E and analytic operator function defined in E respectively, then defines weighted composition operators, discusses boundedness of this operator between operator Bloch-type spaces of analytic operator functions and obtains necessary and sufficient condition of boundedness of composition operator from B^α to B^β.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第6期1178-1182,共5页
Journal of Sichuan University(Natural Science Edition)
关键词
复合算子
解析算子函数
有界性
composition operator
analytic operator functions
boundedness