摘要
设f(z)为复平面上非常数亚纯函数,满足N1)(r,1f)=S(r,f),而d为一非零常数.则T(r,f)<11N(r,f)+11N(r,1f′+df-1)+S(r,f),除非f(z)具有下列形式之一:(i)Ae-dz;(ii)1d(Ae-dz+1)2;(iii)1d(Ae-d2z-1)2;或(iv)Aedz(e-dz+12dA)2,其中A为一非零常数.
Suppose that f(z) is a non-constant meromorphic function in the complex plane satisfying Nl)( r,1/f)=S(r,f) and d is non-zero constant. Then the author proves that
T(r,f)〈11-N(r,f) + 11-N(f,1/f'+df-1)+S(r,f)
except that f(z) is one of the following forms:(i)Ae^-dx;(ii)1/d(Ae^-dx+1)^2 (iii) 1/d(Ae^-d/2x-1)^2;(iv) Ae^dx(e^-dx + 1/2dA)^2, where A is a non-zero constant.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第6期1202-1206,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(10271122)
关键词
零点
微分多项式
不等式
zero
differential polynomial
inequality