期刊文献+

基于独立分量分析的车牌字符识别 被引量:3

Independent Component Analysis Based on Licence Plate Recognition
下载PDF
导出
摘要 利用独立分量分析提取字符特征,以信息理论中负熵作为估计输出分量之间独立性的目标函数,并在此基础上对待识别字符进行重建,通过对重建模型的误差分析进行字符识别.对3000个车牌字符的识别实验,取得了较高的识别率,证明其算法的有效性和鲁棒性. Independent component analysis is used to extract features of characters, and negentropy is applied to estimate statistical independence between output components, then character recognition is conducted based on the error analysis of reconstructed models'. The proposed algorithm is tested on 3000 characters, a high recognition rate can be obtained, and the experimental results demonstrate the algorithm is feasible, robust and applicable.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期1259-1263,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 独立分量分析 特征提取 重建模型 FASTICA算法 independent component analysis feature extraction model reconstruction Fast ICA algorithm
  • 相关文献

参考文献8

二级参考文献62

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2Makeig S et al.Independent component analysis in electroencephalographic data[C].In:Advances in Neural Information Processing Systems,Denver,CO:MIT Press, 1996:145~151
  • 3Lee T W et al. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation, 1999; 11:417~441
  • 4Papadias C B,Paulraj A.A constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays[J].IEEE Signal Processing Lett, 1997; 4 (6): 178~181
  • 5Bell A J ,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation, 1995;7(6): 1004~1034
  • 6Pearlmutter B A,Parra L C.A context-sensitive-generalization of ICA[C].In:Proc Int Conf Neural Information Processing,ICONIP'96,Hong Kong, 1996:151~157
  • 7Karhunen J et al.Applications of neural blind separation to signal and image processing[C].In: Proc ICASSP, 1997; ( 1 ): 131~134
  • 8Cardoso J F,Laheld B H.Equivariant adaptive sources separation[J].IEEE Trans Signal Processing, 1996 ;44(10): 3017~3030
  • 9Cichocki A,Unbehauen R,Moszczynski L et al.A new on-line adaptive learning algorithm for blind separation of sources[C].In:Proc ISANN-94, Tainan, Taiwan, 1994: 406~411
  • 10Cichocki A,Unbehauen R,Rummert E.Robust learning algorithm for blind separation of signals[J].Electronics Letters, 1994; 30 ( 17 ):1386~1387

共引文献141

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部