期刊文献+

正数和与积的对偶不等式 被引量:1

Dual inequalities for sum and product of positive numbers
下载PDF
导出
摘要 给出了在个数相同的两组正数之积相等的情形下,判定这两组正数之和大小的一个充分条件,由此得出了正数和最大值存在的链式条件.应用这一链式条件解决了将,nl个正数分成等个数的n个数组后,每组之积的和与每组之和的积的最值问题.对于正数积的最小值问题,证明了与正数和最大值类似的结果,且相应的定理之间互为对偶定理. For two finite sets of n positive numbers with the same products of n numbers in each set, we give and prove a sufficient condition of determining which sum is small or large in the two sums of n numbers in each set. Thereby, we derive a chain condition of existing maximum values for the sum of all numbers in the set. After partitioning a set of nl positive numbers into n subsets with l numbers, the extreme values of the sum of the n the products of l numbers in each subset and of the product of the n the sums of l numbers in each subset are obtained easily by using the chain condition. For the minimum value problem of the product of positive numbers, we prove the similar results to the maximum value problem of the sum of positive numbers, and the corresponding theorems are dual ones each other.
作者 唐建国
出处 《延边大学学报(自然科学版)》 CAS 2006年第4期235-239,共5页 Journal of Yanbian University(Natural Science Edition)
基金 湖南省自然科学基金资助项目(03JJY3014)
关键词 正数和与积 算术-几何平均不等式 对偶不等式 最大值与最小值 sum and product of positive numbers arithmetic-geometric inequality of the mean dual inequali- ty minimum and maximum values
  • 相关文献

参考文献6

二级参考文献15

  • 1陈计,王振.关于对数平均的下界[J].成都科技大学学报,1990(2):100-102. 被引量:7
  • 2钱金祥.关于一类不等式的推广、引申及应用[J].数学通报,1990,(2):19-21.
  • 3陈传璋,金福临,朱学炎,等. 数学分析[M].第2版.北京: 高等教育出版社,1985.88-89.
  • 4Kestelman H. On arithmetic and geometric means[J]. Math Gaz,1962,46:130-131.
  • 5Chung L W. Inequalities of the Rado-Popoviciu type for functions and their applications[J]. J Math Anal Appl,1984,100:436-446.
  • 6Mitrinovic''DS Vasic''PM 赵汉宾 译.分析不等式[M].南宁:广西人民出版社,1986.121-126.
  • 7Bullen P S, Mitrinovic' D S, Vasic' P M. Means and Their Inequalities[M]. Dordrecht,Boston,Lancaster,Tokyo:Kluwer Academic Publishers,1988.94-105.
  • 8吴承(曾阝) 李绍宗.不等式的证明[M].上海:上海教育出版社,1987.114-115.
  • 9北京.中国大百科全书(数学)[M].上海:中国大百科全书出版社,1998,11..
  • 10匡继昌.常用不等式[M].长沙:湖南师大出版社(第二版),1992..

共引文献28

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部