期刊文献+

岩石Hopkinson层裂的流形元法模拟 被引量:2

Numerical Simulation of Hopkinson Spalling of Rock Using Manifold Method
下载PDF
导出
摘要 利用二阶流形元法,通过引入裂纹产生及扩展判据,对冲击载荷作用下岩石Hopkinson动态层裂过程进行了数值模拟,再现了拉伸波作用下Hopkinson层裂过程,计算得到的层裂片厚度和速度等与理论值符合较好,验证了流形元法在模拟冲击载荷作用下材料动态破坏过程方面的有效性和优越性。 The second-order manifold method (MM) is used to simulate the dynamic Hopkinson spalling process of rock under shock loading through introducing a criterion of crack initiation and crack growth. The attenuation of stress waves and the spalling process caused by a reflected tensile stress wave are reproduced. The simulation results are compared with theoretical analysis. The thickness of the formed scab and its velocity obtained from the simulation are in good agreement with the theoretical values. MM has proven to be an effective method in simulating the dynamic failure process of materials under shock loading and exhibits some advantages to conventional numerical methods in the study of dynamic failure and related issues.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2006年第4期353-358,共6页 Chinese Journal of High Pressure Physics
关键词 Hopkinson层裂 冲击载荷 流形元 数值模拟 Hopkinson dynamic spalling shock loading manifold method numerical simulation
  • 相关文献

参考文献12

二级参考文献43

  • 1石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 2铁摩辛柯 徐芝纶(译).弹性理论[M].北京:高等教育出版社,1990..
  • 3[3]Goldsmith W, Polivka M, Yang T. Dynamic behavior of concrete [J]. Exp Mech, 1966, 6: 65-79.
  • 4[4]Watson A J, Sanderson A J. The resistance of concrete to shock [C]. Proceeding of the Conference on Mechanics and Physics, Behavior of Materials Under Dynamic Loading, 1979. Oxford: The Institute of Physics, 1979.
  • 5[5]J R Klepaczho, A Brara. An experiment method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering, 2001, 25: 387-409.
  • 6[6]F Rubio, etc. The Spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics [J]. International Journal of Impact Engineering, 2002, 27: 161-177.
  • 7[2]London J W, Quinney H. Experiment with the pressure Hopkinson bar [J]. Proc Roy Soc London, ser A: Math Phys Sci, 1923; A103: 622-43.
  • 8[1]Shi G H. Manifold Method Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Madia [M].TSI Press,1996.
  • 9Lok T S, Li X B, Zhao P J, et al. A large diameteg split Hopkinson bar for testing rocks[A]. In: Wang Sijing, Fu Bingjun, Li Zhongkui ed. Frontiers of Rock Mechanics and Sustainable Development in the 21^th Century[C]. Rotterdem: A A Balkema, 2001, 97-100.
  • 10Davis E D H, Hunter S C. Dynamic compvemion of solid by the method of split Hopkinson pressure bar[J]. Journal of Mechanics and Physics of Solid, 1963, 11(2): 155-163.

共引文献256

同被引文献63

引证文献2

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部