摘要
利用二阶流形元法,通过引入裂纹产生及扩展判据,对冲击载荷作用下岩石Hopkinson动态层裂过程进行了数值模拟,再现了拉伸波作用下Hopkinson层裂过程,计算得到的层裂片厚度和速度等与理论值符合较好,验证了流形元法在模拟冲击载荷作用下材料动态破坏过程方面的有效性和优越性。
The second-order manifold method (MM) is used to simulate the dynamic Hopkinson spalling process of rock under shock loading through introducing a criterion of crack initiation and crack growth. The attenuation of stress waves and the spalling process caused by a reflected tensile stress wave are reproduced. The simulation results are compared with theoretical analysis. The thickness of the formed scab and its velocity obtained from the simulation are in good agreement with the theoretical values. MM has proven to be an effective method in simulating the dynamic failure process of materials under shock loading and exhibits some advantages to conventional numerical methods in the study of dynamic failure and related issues.
出处
《高压物理学报》
EI
CAS
CSCD
北大核心
2006年第4期353-358,共6页
Chinese Journal of High Pressure Physics