摘要
We know that an operator T acting on a Banach space satisfying generalized Weyl's theorem also satisfies Weyl's theorem. Conversely we show that if all isolated eigenvalues of T are poles of its resolvent and if T satisfies Weyl's theorem, then it also satisfies generalized Weyl's theorem. We give also a sinlilar result for the equivalence of a-Weyl's theorem and generalized a-Weyl's theorem. Using these results, we study the case of polaroid operators, and in particular paranormal operators.
We know that an operator T acting on a Banach space satisfying generalized Weyl's theorem also satisfies Weyl's theorem. Conversely we show that if all isolated eigenvalues of T are poles of its resolvent and if T satisfies Weyl's theorem, then it also satisfies generalized Weyl's theorem. We give also a sinlilar result for the equivalence of a-Weyl's theorem and generalized a-Weyl's theorem. Using these results, we study the case of polaroid operators, and in particular paranormal operators.
基金
Protars D11/16
Project P/201/03(Morocco-Spain(AECI))