期刊文献+

On the Equivalence of Weyl Theorem and Generalized Weyl Theorem 被引量:2

On the Equivalence of Weyl Theorem and Generalized Weyl Theorem
原文传递
导出
摘要 We know that an operator T acting on a Banach space satisfying generalized Weyl's theorem also satisfies Weyl's theorem. Conversely we show that if all isolated eigenvalues of T are poles of its resolvent and if T satisfies Weyl's theorem, then it also satisfies generalized Weyl's theorem. We give also a sinlilar result for the equivalence of a-Weyl's theorem and generalized a-Weyl's theorem. Using these results, we study the case of polaroid operators, and in particular paranormal operators. We know that an operator T acting on a Banach space satisfying generalized Weyl's theorem also satisfies Weyl's theorem. Conversely we show that if all isolated eigenvalues of T are poles of its resolvent and if T satisfies Weyl's theorem, then it also satisfies generalized Weyl's theorem. We give also a sinlilar result for the equivalence of a-Weyl's theorem and generalized a-Weyl's theorem. Using these results, we study the case of polaroid operators, and in particular paranormal operators.
作者 M.BERKANI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第1期103-110,共8页 数学学报(英文版)
基金 Protars D11/16 Project P/201/03(Morocco-Spain(AECI))
关键词 B-Fredholm operator Weyl's theorem generalized Weyl's theorem a-Weyl's theorem generalized a-Weyl's theorem POLES B-Fredholm operator, Weyl's theorem, generalized Weyl's theorem, a-Weyl's theorem,generalized a-Weyl's theorem, poles
  • 相关文献

参考文献17

  • 1Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J., 43(3), 457-465 (2001)
  • 2Berkani, M.: B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Applications, 272(2), 596-603(2002)
  • 3Berkani, M.: Index of B-Fredholm operators and Generalization of a Weyl Theorem. Proc. Amer. Math.Soc., 130(6), 1717-1723 (2002)
  • 4Weyl, H.: Uber beschrankte quadratischc Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909)
  • 5Rakocevic, V.:Operators obcying α-Weyl's theorem. Rev, Roumaine Math. Pures Appl., 34(10), 915-919(1989)
  • 6Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math., (Szeged) 69, 359-376 (2003)
  • 7Labrousse, J. Ph.: Les operateurs quasi-Fredholm: une generalisation des operateurs semi-Fredholm. Rend.Circ. Math. Palermo, (2), 29, 161-258 (1980)
  • 8Grabiner, S.: Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34, 317-337 (1982)
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 163, 18-49(1966)
  • 10Berkani, M., Arroud, A.: Generalized Weyl's Theorem and hyponormal operators. J. Aust. Math. Soc.,76, 291-302 (2004)

同被引文献1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部