期刊文献+

Existence of Positive Periodic Solutions for Nonautonomous Predator-prey Systems with Discrete and Continuously Distributed Delays 被引量:3

Existence of Positive Periodic Solutions for Nonautonomous Predator-prey Systems with Discrete and Continuously Distributed Delays
原文传递
导出
摘要 By using the continuation theorem of coincidence degree theory, the sufficient conditions to guarantee the existence of positive periodic solutions are established for nonautonomous predator-prey systems with discrete and continuously distributed delays. By using the continuation theorem of coincidence degree theory, the sufficient conditions to guarantee the existence of positive periodic solutions are established for nonautonomous predator-prey systems with discrete and continuously distributed delays.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第1期39-48,共10页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10171044) the Natural Science Foundation of Jiangsu Province(No.BK2001024) the Foundation for University Key Teachers of the Ministry of Education of China
关键词 Predator-prey system time delay positive periodic solution Fredholm operator coincidence degree Predator-prey system, time delay, positive periodic solution, Fredholm operator, coincidence degree
  • 相关文献

参考文献8

  • 1Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992)
  • 2Ding, S.H. On a kind of predator-prey system. SIAM Journal on Mathematical Analysis, 20:1426-1435(1989)
  • 3Freedman, H,I, Deterministic mathematical models in population ecology. Marcel Dekker, New York, 1980
  • 4Gaines, R,E,, Mawhin, J.L. Coincidence degree and nonlinear differential equation. Springer-Verlag, Berlin,1977
  • 5Jose, F., Santiago, V. An approximation for prey-predator modles with delay. Physic D, 110:313-322(1997)
  • 6Kooij, R,E, Zegeling, A, Qualitative properties of two-dimensional predator-prey systems. Nonlinear Analysis, TMA, 6:693-715 (1997)
  • 7Li, Y,K, On a periodic neural delay Lotka-Volterra system. Nonlinear Analysis, 39:767-778 (2000)
  • 8Yang, K., Freedman, H.I. Uniqueness of limit cycles in Gause type models of predator-prey systems.Mathematical Biosciences, 88:67-84 (1988)

同被引文献11

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部