摘要
用泛逻辑学原理,把广义相关性引入到区间值逻辑,重新定义了柔性区间补、柔性区间与、柔性区间或、柔性区间平均等运算模型,且这些运算模型是连续可变的,还进一步证明了柔性区间平均的中介性、交换律、单调性和边界条件.以全新的观点给出柔性区间平均在h几个特殊点处的运算模型,并绘出其图形.
In this paper, using the principle of the universal logics, the Generalized Correlation is introduced into Interval-valued Logics. The operation models of the Flexible Interval I.ogic are redefined, including the Flexible Interval Complement, the Flexible Interval Intersection, the Flexible Interval Union and the Flexible Interval Average. The operation models of the Interval-valued Logics are changeable continuity. The neutralization, commutative, monotonicity and boundary condition of the operation models of the Flexible Interval Average are investigated. From the point of new view, the operation models and the figures of the Flexible Interval Average are given in the special points of h.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期35-39,共5页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10502042)
河南省自然科学基金资助项目(0611053900)
关键词
泛逻辑
广义相关性
区间值逻辑
柔性区间平均
Universal Logics
the generalized correlation
interval valued logic
the Flexible Interval Average