期刊文献+

混合量子进化算法及其在多用户检测中的应用 被引量:1

Hybrid Quantum Evolutionary Algorithms and Its Application in Multiuser Detection
下载PDF
导出
摘要 将量子进化算法(QEA)和粒子群算法(PSO)互相结合,提出了两种混合量子进化算法.通过对多用户检测问题的求解表明,新的算法不仅操作更简单,而且全局搜索能力有了显著的提高. Inspired by the idea of hybrid optimization algorithms, this paper proposes two hybrid quantum evolutionary algorithms (QEA) based on combining QEA with particle swarm optimization (PSO). The experiment re,suits of multiuser detection problem show that both of the proposed methods not only have simpler algorithm structure, but also perform better than conventional QEA and BPSO in terms of ability of global optimum.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期46-49,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅科技攻关项目(200510480003) 河南省科技厅科技攻关项目(0524220054)
关键词 量子进化算法 粒子群优化算法 混合 进化算法 quantum evolutionary algorithm particle swarm optimization hybrid evolutionary algorithm
  • 相关文献

参考文献7

  • 1Narayanan A,Moore M.Quantum-inspired Genetic Algorithms[C].Proceedings of IEEE International Conference on Evolutionary Computation,Nagoya,1996.
  • 2Han K-H,Kim J-H.Genetic Quantum Algorithm and its Application to Combinato-rial Optimization Problem[J].Proceedings of the 2000 Congress on Evolutionary Computation,2000(2):1 354-1 360.
  • 3Han K-H,Kim J-H.Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization[J].IEEE trans.Evolutionary Computation,2000,6(6):580-593.
  • 4杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of the International Conference on Evolutionary Computation,Perth Western Australia,1995.
  • 6van den Bergh F,Engelbrecht A P.A Cooperative Approach to Particle Swarm Optimization[J].IEEE trans Evolutionary Computation,2004,8(3):225-239.
  • 7Kennedy J,Eberhart R C.A Discrete Binary Version of the Particles Swarm Algorithm[C].International conference on Systems Man and Cybernetics,Orlando,1997.

二级参考文献9

  • 1[1]Holland J H.Genetic algorithms and classifier systems:foundations and their applications [A].Proceedings of the Second Intemational Conference on Genetic Algorithms[C].1987:82-89.
  • 2[2]Rechenberg I.Evolutionsstrategie:Optimieung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 3[3]Klockgether J,Schwefel H P.Two-phase nozzle and hollow core jet experiments [A].In Elliott D.(eds.) Proc.11th Symp.Engineering Aspects of Magneto hydrodynamics [C].California Institute of Technology,Pasadena CA,March,1970,24-26:141-148.
  • 4[4]Fogel L J,Owens A J,Walsh M J.Artificial Intelligence Through Simulated Evolution [M].John Wiley,Chichester,UK,1966.
  • 5[5]Rechenberg I.Evolutionsstrategie:Optimierung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973.
  • 6[6]Schwefel H P.Evolution and Optimum Seeking.Sixth Generation Computer Technology Series [M].Wiley,New York,1995.
  • 7[7]Back T,Hoffmeister F,Schwefel H P.A Survey of Evolution Strategies[A].In Belew R.and Booker L.(eds.) Proceedings of the Forth International Conference on Genetic Algorithms [C],Morgan Kaufmann Publishers,San Mateo,CA,1991:2-9.
  • 8[9]陈国良,王熙法,庄镇泉,王东生.遗传算法及其应用[M].人民邮电出版社,1997.
  • 9王安民.计算的量子飞跃[J].物理,2000,29(6):351-357. 被引量:5

共引文献31

同被引文献21

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部