摘要
将量子进化算法(QEA)和粒子群算法(PSO)互相结合,提出了两种混合量子进化算法.通过对多用户检测问题的求解表明,新的算法不仅操作更简单,而且全局搜索能力有了显著的提高.
Inspired by the idea of hybrid optimization algorithms, this paper proposes two hybrid quantum evolutionary algorithms (QEA) based on combining QEA with particle swarm optimization (PSO). The experiment re,suits of multiuser detection problem show that both of the proposed methods not only have simpler algorithm structure, but also perform better than conventional QEA and BPSO in terms of ability of global optimum.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第4期46-49,共4页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省教育厅科技攻关项目(200510480003)
河南省科技厅科技攻关项目(0524220054)
关键词
量子进化算法
粒子群优化算法
混合
进化算法
quantum evolutionary algorithm
particle swarm optimization
hybrid
evolutionary algorithm