期刊文献+

基于支持向量机的控制图在线检测和分析系统的研究 被引量:1

Study on On-line Detection and Analysis System of Control Chart Based on Support Vector Machine
下载PDF
导出
摘要 针对控制图在线检测和分析的要求,提出了系统基本框架。利用一对一算法的多类分类支持向量机进行控制图模式识别和异常模式下参数估计。在模型构造中,采用混合核函数,并利用遗传算法优化混合核函数支持向量机参数。仿真结果和实际应用表明:该方法结构简单、收敛速度快,识别准确率高,能够满足控制图在线检测和分析的需要。 To satisfy the needs of on line detection and analysis of control chart, the general framework was presented. A method based on one against-one-algorithm multi-class classification support vector machine was proposed. In the modeling of structure, the hybrid kernel was applied, and the genetic algorithm was used to optimize the parameters of SVM. The simulation and ap plication results show that the performance of the proposed method has so many advantages such as simple structure, quick convergence and high aggregate classification rate, that it can be applied in on --ine detection and analysis of control chart.
机构地区 福建工程学院
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第24期2562-2567,共6页 China Mechanical Engineering
关键词 控制图 模式识别 参数估计 支持向量机 遗传算法 control chart pattern recognition parameter estimation support vector machine genetic algorithm
  • 相关文献

参考文献15

  • 1Pharm D T, Oztemel E. Control Chart Pattern Recognition Using Neural Networks [J]. Journal of System Engineering, 1992,2 (4): 256-262.
  • 2Cheng C S. A Neural Network Approach for the Analysis of Control Chart Patterns[J]. International Journal of Production Researclh, 1997,35 (3): 667-697.
  • 3李孟清,张春良,杨叔子,陈志祥.质量管理图中趋势模态及阶跃模态的模糊神经网络识别[J].中国机械工程,2004,15(22):1998-2001. 被引量:10
  • 4乐清洪,高星海,郝俊,朱名铨.一种适用于模式识别的新型神经网络[J].计算机工程,2004,30(17):17-18. 被引量:6
  • 5Guh R S. Intergrating Artificial Intelligence into On-line Statistical Process Control [J]. Quality and Reliability Engineering International, 2003,19 (1): 1-20.
  • 6Yang J H, Yang M S. A Control Chart Pattern Recognition System Using A Statistical Correlation Coefficient Method[J]. Computers & Industrial Engineering,2005,48(2):205-221.
  • 7Guh R S. A Hybrid Learning-based Model for On-line Delection and Analysis of Control Chart Pattern [J]. Computers & Industrial Engineering,2005,49(1): 35-62.
  • 8Yousef A A. Recognition of Control Chart Patterns Using Multi- resolution Wavelets Analysis and Neural Networks[J]. Computers & Industrial Engineering, 2004,47(1): 17-29.
  • 9Yousef A A. Multi-resolution Wavelets Analysis Approach for the Recognition of Concurrent Control Chart Patterns [J]. Quality Engineering, 2005, 17(1):11-21.
  • 10Khaled A, Yousef A A. Features Extraction and Analysis for Classifying Causable Patterns in Control Charts[J]. Computers & Industrial Engineering,2005,49(1):168-181.

二级参考文献7

  • 1朱名铨,蔡永霞.有监督线性特征映射(SLFM)网络及刀具磨损量实时估计[J].西北工业大学学报,1997,15(1):1-6. 被引量:10
  • 2[1]Guh R S, Hsieh Y C. A Neural Network Based Model for Abnormal Pattern Recognition of Control Charts. Computers & Industrial Engineering, 1999, 36: 97-108
  • 3[2]Perry M B, Spoerre J K, Velasco T. Control Chart Pattern Recognition Using Back Propagation Artificial Neural Networks. International Journal of Production Research, 2001, 39( 15): 3399-3418
  • 4[3]Hwamg H B, Hubele N F. Back-propagation Pattern Recognizers for X -Bar Control Charts: Methodology and Performance. Computers & Industrial Engineering, 1993, 24: 219-235
  • 5Cheng C S. A Neural Network Approach for the Analysis of Control Chart Pattern. International Journal of Production Research, 1997, 35(3): 615~619
  • 6Cheng Chuen-Sheng. A Multi-layer Neural Network Model for Detecting Changes in the Process Mean. Computer in Industry, 1995, 28(1): 51~61
  • 7Wang Jiemin, Kochhar A K, Hannam R G. Pattern Recognition for Statistical Process Control Charts. International Journal of Manufacturing Science and Technology,1998, 14:99~109

共引文献17

同被引文献11

  • 1何永辉,王康健,石桂芬.基于机器视觉的高速带钢孔洞检测系统[J].应用光学,2007,28(3):345-349. 被引量:13
  • 2Tony W A. Automatic Inspection of Metal Products Not Quit Ready for Prime Time[J].Iron & Steel Maker, 1992,19( 1 ) : 14-19.
  • 3Yngve S. Automatic SurfaceInspection of Continu- ously Cast Billets[J].Iron and Steel Engineer, 1992, 69(5) 29-33.
  • 4Maki H, Tsunozaki Y, Mastsufuji Y. Magnetic On- Line Defect Inspection System for Strip Steel[J]. Iron and Steel Engineer, 1993,70 ( 1 ) : 56-59.
  • 5Vapnik V N. The Nature of Statistical Learning Theory[M]. Berlin: Springer Verlag, 1995.
  • 6Kumar M A,Gopal M. Fast Multiclass SVM Classi- fication Using Decision Tree Based One-Against- All Method[J].Neural Processing Letters, 2010,32 (3) :311-323.
  • 7Davies E R. Machine Vision=Theory, Algorithms, Practicalities[M]. Beijing.Posts & Telecom Press, 2009.
  • 8Chalimourda A, Smola A. Experimentally Optimal in Support Vector Regression for Different Noise Models and Parameter Settings[J]. Neural Networks, 2004,17 (1) :127-141.
  • 9刘定平,叶向荣,陈斌源,汤美玉.基于核主元分析和最小二乘支持向量机的中速磨煤机故障诊断[J].动力工程,2009,29(2):155-158. 被引量:25
  • 10徐科,杨朝霖,周鹏.热轧带钢表面缺陷在线检测的方法与工业应用[J].机械工程学报,2009,45(4):111-114. 被引量:60

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部