期刊文献+

基于GRNN神经网络的长江干线港口集装箱吞吐量预测 被引量:14

Container Turnover Forecast of Link Ports alongside the Yangtze River Based on GRNN
下载PDF
导出
摘要 在长江集装箱货源市场调查分析的基础上,根据长江干线集装箱发展形势,结合长江干线港口发展情况及历年数据调查,考虑影响港口吞吐量预测的复杂因素,运用GRNN神经网络的优点,构建预测模型。预测结果证明,该模型在应用中是有效的,且当样本数据短缺时,预测效果也较佳。 On the basis of investigation and analysis of the container supply market alongside the Yangtze River, a forecast model is constructed by taking the advantages of GRNN, in which the development situations of link ports and container, survey data for years, and complicated factors about port throughput forecast are considered. Forecast results have proved that the model is effective in the forecast of link port container tumover and even in the case of sample data shortages.
机构地区 上海海事大学
出处 《中国航海》 CSCD 北大核心 2006年第4期90-91,100,共3页 Navigation of China
基金 国家自然科学基金项目(70371012) 上海市重点学科建设项目资助(T0602)
关键词 水路运输 集装箱 吞吐量 预测 Waterway transportation Container Turnover Forecast
  • 相关文献

参考文献5

二级参考文献4

共引文献13

同被引文献105

引证文献14

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部