期刊文献+

太阳散射辐射逐日预测模型研究 被引量:4

Study on Daily Solar Diffuse Radiation Forecasting Model
下载PDF
导出
摘要 针对于传统的确定性太阳辐射模型不能反映气象变化的弊端,提出了基于回归BP神经网络和小波分析理论的太阳散射辐射逐日预测模型。神经网络具有非线性函数逼近及自组织自学习的能力,基于小波分析在信号处理方面的时频域多分辨特性,本文利用小波变换将太阳散射辐射数据序列进行时频域分解后作为神经网络预测模型的输入样本,实例表明该方法与传统模型相比预测精度高,具有可行性。 Classic solar radiation models are meteorological variety irrespectively. In order to avoid this disadvantage, a daily solar diffuse radiation forecasting model based on recurrent BP network and wavelet analysis is put forward. Artficial neural network has the capacity of non-linear function approximation, self-orgnizing and self-learning. Based on multi-resolution advantadge of wavelet analysis's time-frequency domains, the wavelet transform method is adopted to decompose the solar diffuse radiation sequence into various time-frequency domains as the input data of the artficial neural network. An example indicates the accuracy of this method is higher than that of the methods reported before, and has higher feasibility.
出处 《建筑热能通风空调》 2006年第6期76-79,共4页 Building Energy & Environment
关键词 太阳散射辐射 递归BP网络 小波变换 相关系数 solar diffuse radiation, recurrent BP network, wavelet transform, correlation coefficient
  • 相关文献

参考文献6

  • 1ASHRAE. Handbook of Fundamentals [M]. New York: ASHRAE, 1978
  • 2宋爱国,王福然.北京地区晴天太阳辐射模型初探[J].太阳能学报,1993,14(3):251-255. 被引量:25
  • 3宇田川光弘.水平面全天日射量观测值ょり直达日射量の推定[R].日本建筑学会论文报告集,1978,(267):83
  • 4Shuanghua Cao, Jiacong Cao. Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis [J].Applied Thermal Engineering, 2005, 25:161-172
  • 5葛哲学.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 6孙志强.神经理论与MATLAB7实现[M].北京:电子工业出版社,2005

共引文献32

同被引文献43

  • 1曹双华,曹家枞,刘凤强.小波分析在太阳辐射神经网络预测中的应用研究[J].东华大学学报(自然科学版),2004,30(6):18-22. 被引量:9
  • 2周晋,吴业正,晏刚,马贞俊.利用神经网络估算太阳辐射[J].太阳能学报,2005,26(4):509-512. 被引量:31
  • 3查良松.我国地面太阳辐射量的时空变化研究[J].地理科学,1996,16(3):232-237. 被引量:65
  • 4杨胜朋,王可丽,吕世华.近40年来中国大陆总辐射的演变特征[J].太阳能学报,2007,28(3):227-232. 被引量:50
  • 5赵玲玲,翁苏明,曾华军,等.模式分析的核方法[M].北京:机械工业出版社,2006.
  • 6Kevin K W,Wan H L,et al.An analysis of thermal and solar zone radiation models using an Angstrom-Prescott equation and artificial neural networks[J].Energy,2008,33(7):1115-27.
  • 7JIANG Yingni. Computation of monthly mean daily global solar radiation in China using artificial neural networks and compari- son with other empirical models [J]. Energy, 2009, 34: 1276- 1283.
  • 8WANA K K W, TANGA H L, YANG L, et al. An analysis of thermal and solar zone radiation models using an Angstrom- Prescott equation and artificial neural networks[J]. Energy,2008, 33(7) : 1115-27.
  • 9MUBIRU J, EJKB Banda. Estimation of monthly average daily global solar irradiation using artificial neural networks~J]. Solar Energy, 2008,82 (2) : 1-7.
  • 10FADARE D A. Modelling of solar energy potential in Nigeria using an artificial neural network model[J]. Appl Energy, 2009, 86:1410-22.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部