期刊文献+

基于SVM的精确数-区间数回归模型建模方法 被引量:7

SVM Based Algorithm for Regressive Modeling with Accurate Data Input-interval Number Output
下载PDF
导出
摘要 分析了现有的精确数输入和区间数输出回归算法存在的问题,提出了基于支持向量机的区间数回归建模算法.该算法把支持向量机从精确数回归分析方法推广到区间数回归分析建模方法,在小样本训练集下回归模型具有良好的泛化性能,有效地避免了现有算法中回归模型的下界可能大于上界的问题.以连续退火生产过程中冷却段出口带钢温度预测为例,通过仿真说明了该算法的有效性. A SVM based algorithm is proposed to cope with regressive modeling problems with accurate data inputinterval number output. A regressive modeling approach based on the support vector machine (SVM) theory is generalized from real number domain to interval number domain. The proposed algorithm can promote the generalization properties of regressive models in the ease of small sampling sets and effectively overcomes the shortage of the existing algorithms that the lower limits of model outputs may exceed their upper limits. An example for the prediction of temperature distribution of export strap steel in continuous annealing process demonstrates the effectiveness and efficiency of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2006年第12期1326-1331,共6页 Control and Decision
基金 国家973计划项目(2002CB312203)
关键词 区间数 支持向量机 回归分析 数据挖掘 Interval number Support vector machine(SVM) Regression analysis Data mining
  • 相关文献

参考文献12

  • 1Ferson S,Akcakaya H R,Dunham A.Using Fuzzy Intervals to Represent Measurement Error and Scientific Uncertainty in Endangered Species Classification[A].Fuzzy Information Processing Society[C].Nafips,1999:690-694.
  • 2Lee Haekwan,Tanaka Hideo.Upper and Lower Approximation Models in Interval Regression Using Regression Quantile Techniques[J].European J of Operational Research,1999,116(3):652-666.
  • 3Ishibuchi H,Tanaka H.Fuzzy Regression Analysis Using Neural Networks[J].Fuzzy Sets and Systems,1992,50(3):57-65.
  • 4Huang L,Zhang B L,Huang Q,et al.Robust Interval Regression Analysis Using Neural Networks[J].Fuzzy Sets and Systems,1998,97(2):337-347.
  • 5Jin-tsong Jeng,Chen-chia Chuang,Shun-feng Su.Support Vector Interval Regression Networks for Interval Regression Analysis[J].Fuzzy Sets and Systems,2003,138(2):283-300.
  • 6Moore R E.Interval Analysis[M].New Jersey:Prentice Hall,1966.
  • 7Lai K K,Wang Y,Xu J P.A Class of Linear Interval Programming Problems and Its Application to Portfolio Selection[J].IEEE Trans on Fuzzy Systems,2002,10(6):698-703.
  • 8Vapnik VN,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2001,85-90
  • 9Vladimir C,Ma Y Q.Practical Selection of SVM Parameters and Noise Estimation for SVM Regression[J].Neural Networks,2004,17(1):113-126.
  • 10Smola A J.Learning with Kernels[D].Berlin:Technischen Universitsitt Berlin,1998.

共引文献8

同被引文献60

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部