期刊文献+

余因子系与公因子分次判别准则 被引量:4

The cofactor system and a criterion on common factor with given arbitrary degree
下载PDF
导出
摘要 引进了余因子系的概念,并利用余因子系给出一种惟一分解环上多项式系公因子存在性的分次判别准则,为在计算代数几何等领域的深入应用提供了理论依据. The theory about common factor of polynomials is very important in many research fields,such as symbolic computation, interpolation theory, automatic theorem proving, and robotics. This paper introduces the cofactor system of a polynomial system on unique factorization domain. Using the cofactor system, it obtains a criterion on common factor with given arbitrary degree. This result provides a theory foundation of application in computational algebraic geometry and other corresponding fields.
作者 王晓辉
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期1-5,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571102)
关键词 惟一分解环 余因子系 分次判别准则 unique factorization domain cofactor system criterion according to degree
  • 相关文献

参考文献12

  • 1苟立丹,薛康.Y_q(sl(2))代数的进一步研究[J].东北师大学报(自然科学版),2005,37(4):47-52. 被引量:5
  • 2程晓春,钟绍春,欧阳丹彤,李春生,陈庆锋,张成奇.抽象算子逻辑及其自然演绎系统[J].东北师大学报(自然科学版),2004,36(4):38-44. 被引量:1
  • 3VAN DER WAERDEN B L.Modern Algebra,Vol I English transl[M].New York:Ungar,1949.
  • 4WALKER,R J.代数曲线[M].北京,科学出版社,1958.
  • 5P 格列菲斯.代数曲线[M].北京:北京大学出版社,1985.
  • 6COX D,LITTLE J,SHEA O',Ideals,varieties,and algorithms[M].New York:Springer-Verlag,1992.
  • 7MISHRA B.Algorithmic algebra[M].New York:Springer-Verlag,1993.
  • 8KUNIO KAKIE.The resultant of several homogeneous polynomicls in two indeterminates[J].Proceeding of American Math Society,1976,54:1-7.
  • 9盛中平,崔凯,吕显瑞.Kunio Kakie定理的一般形式[J].东北师大学报(自然科学版),1998(2):12-15. 被引量:3
  • 10盛中平,崔凯,吕显瑞.塔形阵与塔形代数[J].东北师大学报(自然科学版),1999,31(1):19-22. 被引量:3

二级参考文献31

  • 1刘叙华,程晓春.基于信度语义的算子模糊逻辑[J].计算机学报,1995,18(12):881-885. 被引量:8
  • 2程晓春,刘叙华,陆汝钤.基于证据语义的算子模糊逻辑[J].科学通报,1995,40(1):86-88. 被引量:7
  • 3[1]Guinchiglia F,Walsh T.A theory of abstraction[J].Artificial Intelligence,1992,57:323~389.
  • 4[3]Cousot P,Cousot R.
  • 5[4]Marriott K.Sondergaard H.Analysis of constraint logic programs [A].In De Bray S,Hermenegildo M.Logic programming:proceedings of the 1990 north american conference [C].MIT Press,1990,531~547.
  • 6[5]Plaisted D A.Theorem proving with abstraction [J].Artificial Intelligence,1981,16:47~108.
  • 7[6]Chang C L.Resolution plans in theorem proving [A].In Proc 6 th international joint conference on artificial intelligence [C].Tokyo:1979,143~148.
  • 8[7]Chang C L,Slagle J R.Using rewriting rules for connection graphs prove theorems [J].Artificial Intelligence,1979,12:159~180.
  • 9[10]Cheng Xiaochun,Jiang Yunfei,Liu Xuhua.Dialectic operator fuzzy logic [J].Science in China(Series E),1996,39(1):1~10.
  • 10[12]Cheng Xiaochun,Dai Haihong.Operator fuzzy logic based on argumentation [J].Modeling Technologies and Intelligent Systems Track,1998(6~9):215~222.

共引文献9

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部