摘要
设q是素数的幂次,Fq为一有限域;F为Fq上的单变量代数函数域.在这篇文章中我们证明了下面的素数定理,■其中logqx以q为底的对数,这一结果改进了M.Kruse,H.Stichtenoth的结果.
Suppose q is the power of prime number, Fq is a finite field; F is an Algebraic Function Field of Dimension 1 over Fq. In this paper, we proved the following prime number theorem,
πF(x)=1/(q-1).x/logqx+O(x/log^2qx).x=q^n→∞
where logq x is an logarithmic which bases on q, this result improved the one of M.Kruse, H.Stichtenoth's.
出处
《应用数学与计算数学学报》
2006年第2期126-128,共3页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(10171060
0171076 and 10471104)
关键词
Abel分部求和法
有限域
单变量代数函数域
素数定理
Abel summation by parts method, finite field, algebraic function field of dimension 1, prime number theorem