期刊文献+

基于神经网络和层次SVM的多姿态人脸识别 被引量:4

Pose-varied Face Recognition Based on Neural Network and Hierarchical Support Vector Machines
下载PDF
导出
摘要 提出了一种基于神经网络和层次支持向量机的多姿态人脸识别方法。该方法在训练阶段先利用神经网络把姿态人脸图像特征向准标准人脸图像特征映射,再根据聚类结果来训练支持向量机。识别阶段是利用神经网络变换得到待识别图像所对应的准标准图像的特征,再让层次支持向量机初步判断待识别图像最可能所属的人,最后利用否定算法对待识别的人脸图像进行确认。实验表明该算法效果较佳。 The paper presents a method of pose-varied face recognition based on neural network and hierarchical support vector machines. At the stage of training, it transforms the feature vector of pose-varied image to the feature vector of standard image using neural network, then clusmrs the standard image feature vector, and trains the hierarchical support vector machines using the result of clustering, At the stage of the recognition, it transforms the feature vector of pose-varied image to the feature vector of standard image using the neural network, estimates which person the image mostly belongs to using hierarchical support vector machines, and confirms estimation using negative algorithm. The experiment shows that the effect is better.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第24期209-210,215,共3页 Computer Engineering
基金 湖南省自然科学基金资助项目(03JJY3101) 湖南省教育厅科研基金资助项目(04C076)
关键词 神经网络 层次支持向量机 离散余弦变换 聚类算法 Neural network Hierarchical support vector machines Discrete cosine transformation Clustering algorithm
  • 相关文献

参考文献5

  • 1Beymer D J.Pose-invariant Face Recognition Using Real and Virtual Views[D].Cambridge:MIT,1996.
  • 2Lades M,Vorbruggen.Distortion Invariant Object Recognition in the Dynamic Link Architecture[J].IEEE Trans.on Computer,1993,42 (3):300-311.
  • 3李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4Turk M,Pentland A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 5朱长仁,王润生.基于单视图的多姿态人脸识别算法[J].计算机学报,2003,26(1):104-109. 被引量:23

二级参考文献8

  • 1[1]Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: Asurvey. In: Proceedings of the IEEE, 1995,83(5):705~740
  • 2[2]Samal A, Iyengar P A. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition, 1992,25(1):65~77
  • 3[3]Valentin D, Abdi H, O'Toole A J. Cottrel G W. Connectionist model of face processing: A survey. Pattern Recognition, 1994,27(9):1209~1230
  • 4[4]Brunelli R, Poggio T. Face recognition: Feature versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(10):1042~1052
  • 5[5]Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1):71~86
  • 6[6]Pentland A, Moghaddam B, Starner T. View based and modular eigenspaces for face recognition. In: Proceedings of IEEE ConferenceCVPR'94, Seattle, 1994. 84~91
  • 7[7]Lam K M, Yan H. An improved method for locating and extracting the eye in human face images. In: Proceedings of ICPR'96,Vienna, Austria, 1996, C:411~415
  • 8[8]Xie X, Sudhaker R, Zhuang H. On improving eye feature extraction using deformable templates. Pattern Recognition, 1994,27(6):791~799

共引文献101

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部