期刊文献+

利用运算矩阵数值求解常微分方程的改进方法

An Improved Numerical Method for ODE via Operational Matrices
下载PDF
导出
摘要 给出一种基于Haar小波积分运算矩阵求解常微分方程的改进方法,称之为区间分段法.在相同误差条件下,该方法计算速度更快,同时,对于不同的子区间,可根据精度的要求来设定离散点数,增加了应用的灵活性. Based on ilaar wavelets operational matrix of integration, an improved method is obtained which is called piecewise method for solving ODE. Under the same errors, its speed is faster. At the same time, for the different subintervals, different uolloeate points can be set based on the need of precision, so it can be applied better.
作者 刘孝锋
出处 《汕头大学学报(自然科学版)》 2006年第4期15-19,共5页 Journal of Shantou University:Natural Science Edition
关键词 运算矩阵 常微分方程 区间分段法 HAAR小波 operational matrix ordinary differential equation method of interval pieecwise Haar wavelet
  • 相关文献

参考文献6

  • 1Chen C F, Hsiao C H, Haar wavelet method for solving lumped and distributed-parameter systems[J]. IEE Proc. Control Theory Appl, 1997, 144(1): 87-94.
  • 2Chen C F, Hsiao C H. Wavelet approach to optimizing dynamic systems[J], IEE Proc. Control Theory Appl, 1997, 146(2): 213-219.
  • 3Hsiao C H, Wang W J. State analysis of time-varying singular nonlinear systems via Haar wavelets[J]. Math. Comput. Simulat, 1999, 51(1): 91-100.
  • 4Hsiao C H, Wang W J. State analysis of time-varying singular bilinear systems via ltaar wavelets[J].Math, Comput, Simulat, 2000, 52(1 ): 11-20.
  • 5Hsiao, C H, Wang W J. Haar wawelet approach nonlinear stiff systems[J]. Math. Comput. Simulat,2001, 57(6): 347-353.
  • 6Strang G. Wavelet and dilation equation a brief introduction[J]. SIAM Rev, 1989, 31(4): 614-627.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部