摘要
引进了集值映射关于锥的(1,α)-阶Clarke切导数,(1,α)-阶Adjacent切导数,(1,α)-阶Contingent切导数概念;应用它们导出了具Slater约束规格的集值优化问题的Benson真有效解的广义Kuhn-Tucker最优性条件.
The concepts of (1, α)- order Clarke tangent derivative, (1,α)- order adjacent tangent derivative and (1, α)- order contingent tangent derivative for a set-valued map with respect to cone are introduced; Applying this, the generalized Kuhn-Tucker optimality conditions for set-valued optimization problems with Benson proper efficiency are established.
出处
《运筹学学报》
CSCD
北大核心
2006年第4期106-114,共9页
Operations Research Transactions
基金
贵州省科技厅基金
贵州省教育厅基金(No2003301).
关键词
运筹学
集值映射
切锥
Benson真有效
广义Kuhn—Tucker条件
OPerations research, set-valued map, tangent cone, Benson proper efficiency, the generalized Kuhn-Tucker optimality conditions