期刊文献+

带子群的自组织蠕虫算法在优化方面的应用 被引量:1

Subgroup-Self-Organizing Worm Algorithm in Function Optimization
下载PDF
导出
摘要 带子群的自组织蠕虫算法(Subgroup-Self-OrganizingWormAlgorithm,SSOMA)是一种全新的基于涌现方法的多模态优化算法。与传统的多模态算法相比,该算法具有计算简单、收敛性好、精度高且不需要任何先验知识等优点。对该算法在高维多模态问题优化方面的应用进行了一定的探索,提出了适用于高维函数的算法,用经典测试函数对该算法进行了仿真实验,并进行了计算复杂度分析,结果表明该算法在高维多模态函数优化方面具有较为理想的应用前景。 In this paper Subgroup-Self-Organizing Worm Algorithm(SSOMA) is presented based on the emergence method in complexity research and the classical searching methods,The main idea of this algorithm carl be described as follow:search the neighboring regions of peak points through the prophase optlmization;select a small quantity of units to build up subgroup .in every region,and process the anaphase optimization in these subgroups,by which the peak points will be found in these subgroups,The computation complexity can be lowered obviously and the convergence rate can also he improved efficiently by this method,At last,experiments are given to solve several typical.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第35期21-23,29,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(70572045)。
关键词 子群 自组织蠕虫算法 多模态优化算法 多维函数 涌现 subgroup Self-Organizing Worm Algorithm (SOWA) Multi-Modal Optimization Algorithm multidimensional function emergence
  • 相关文献

参考文献7

  • 1CAVICCHIO D J.Adaptive search using simulated evolution[D].University of Michigan,Ann,Arbor,1970.
  • 2DE JONG K A.An analysis of the behavior of a class of genetic algorithms[D].University of Microfilms,Ann,Arbor,1975.
  • 3PERRY Z A.Experimental study of speciation in ecological niche theory using genetic algorithms[D].University of Microfilms,Ann,Arbor,1984.
  • 4GOLDBERG D E,RICHARDSON J.Genetic algorithms with sharing for multi-modal function optimization[C]//proceedings of the Second International Conference on Genetic Algorithms,Massachusetts Institute of Technology,C ambridge,MA,Hillsdale,July 28-31,1987:41-49.
  • 5HOLLAND J H.Adaptation in natural and artificial system:an introduction analysis with applications to biology,control,and artificial intelligence[M].Michigan:The University of Michigan Press,1975.
  • 6刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 7KENNEDY J,EBERHART R C.Particle swarm optimization[C]//proceeding of IEEE Int'l Conf on Neural Networks.Piscataway,NJ:IEEE Service Center,1995,Ⅳ:1942-1948.

二级参考文献6

  • 1MICHALEWICZ Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 2WANG Xiufeng, ELBULUK M E. The application of genetic algorithm with neural networks to the induction machines modeling [J].System Analysis Modeling Simulation, 1998,31:93- 105.
  • 3HOLLAND J H. Adaptation in Natural and Artificial System: An Introduction Analysis with Applications to Biology, Control and Artificial Intelligence [M]. Michigan, USA: The University of Michigan Press, 1975.
  • 4GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodel function optimization [C]//Proc of the Second lnt Confon Genetic Algorithms: July 28 - 31, 1987 at the Massachusetts Institute of Technology. Massachusetts, USA: The Massachusetts Institute of Technology Press, 1987:41 -49.
  • 5WILLIAM M. Spears, simple subpopulation schemes [C]//Proc of the Third Annual Conference on Evolutionary Programming, Feb. 24- 26, 1994 at San Diego, California, USA. Singapore: World Scientific, 1994:296 - 307.
  • 6刘洪杰.[D].天津:南开大学,2002.

共引文献22

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部