期刊文献+

碳酸钙包覆颗粒的分形表征及维数计算 被引量:1

Fractal Token and FD Calculation of CaCO_3 Coated Particle
下载PDF
导出
摘要 基于分形理论,利用数字图像处理软件Photoshop对碳酸钙包覆颗粒的SEM照片进行了处理。使用计算机最小图形单元——像素为数据单位,利用周界直径关系法和周界面积关系法分别对碳酸钙包覆颗粒的边界分维进行了计算,并利用截面约定方法给出了其三维分形维数值。 Using Image Processing Software (IPS) Photoshop, this paper handles the Scan Electron Microscope (SEM) photos of CaCO3 coated particles based on fractal theories.Pixel,the least image element is taken as the data unit,P-D and P-A methods are used to calculate the border fractal dimension of calcium carbonate coverture particles in this paper.At the last,3-D fractal dimension value of the particle is given according to section agreement method.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第35期206-207,229,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(50474003) 湖南省普通高校青年骨干教师培养对象资助项目。
关键词 分形维数 形貌表征 PHOTOSHOP 像素 截面约定 fractal dimension micro-topography token Photoshop pixel section agreement
  • 相关文献

参考文献7

二级参考文献25

  • 1贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16(4):375-384. 被引量:59
  • 2Falconer K 曾文曲等(译).分形几何--数学基础及其应用[M].沈阳:东北工学院出版社,1991..
  • 3[1]Mandelbrot B B. Fractals: Form, Chance and Dimension[M]. CA: Freeman, 1977.
  • 4[2]Mandelbrot B B. The Fractal Geometry of Nature[M]. CA: Freeman, 1982.
  • 5[3]Gangepain J, Roques-Carmes C. Fractal approach to two dimen-sional and three dimensional surface roughness[J]. Wear, 1986, 109: 119-126.
  • 6[5]Majudar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136: 313-324.
  • 7[7]Suryaprakash G, Bharat B. Generalized fractal analysis and its applications to engineering surfaces[J]. Wear, 1995, 180: 17-34.
  • 8[8]Zhang M Q, Song L, Zeng H M, et al. Predictability of wear status provided by fractal dimensions of wear particles[J]. Journal of Materials Science Letters, 1996, 15: 1 288-1 290.
  • 9[10]Pentland A P. Fractal-based description of natural scenes[J]. IEEE PAMI, 1984, PAMI-6 (6): 661-674.
  • 10[11]Ajay K B, Jibitesh M. On calculation of fractal dimension of images[J]. Pattern Recognition Letters, 2001, 22: 631-637.

共引文献43

同被引文献13

  • 1王海云.混沌、分形学应用于环境科学的实证分析与探讨[J].环境技术,2004,22(4):1-4. 被引量:11
  • 2杨书申,邵龙义,李卫军,张桂林,谈明光.上海市冬季可吸入颗粒物微观形貌和粒度分布[J].环境科学,2007,28(1):20-25. 被引量:36
  • 3Kaye B H.分形浸步[M].徐新阳,康雁,陈旭,等译.沈阳:东北大学出版社,1994.
  • 4Harris S J,Maricq M M.Signature size distributions for diesel and gasoline engine exhaust paniculate matter[J].Journal of Aerosol Science,2001,32(6):749-764.
  • 5Whittaker A C,Jones T P,Shao L Y,et al.Mineral dust in urban air Beijing,China[J].Mineralogical Magazine,2003,67(2):173-182.
  • 6Xie Y,Hopke P K.Use of multiple fractal dimensions to quntify airborne particle shape[J|.Aerosol Science and Technology,1994,20(2):161-168.
  • 7Kaye B H.Applied fractal geometry and powder technology[J].Chaos,Solimu & Fracmls,1995,6:245-253.
  • 8Kindratenko V V,van Espen P J M,Treiger B A,et al.Fractal dimensional classification of aerosol particles by computer-controlled scanning microscopy[J].Environment Science & Technology,1994,28(12):2197-2202.
  • 9Mandelbrot B B.The fractal geometry of nature[M].San Francisco:Freeman,1982.
  • 10邓昭镜,邹旭敏.超微粒聚集体的分形特征[J].物理,1997,26(1):18-22. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部