期刊文献+

带有确定生成元的倒向随机微分方程的共单调定理 被引量:1

Comonotonic Theorems of BSDEs with Deterministic Generators
下载PDF
导出
摘要 对倒向随机微分方程(简记BSDE)的解(y,z),利用Malliavin微分的方法进行了研究.给出了某些关于比较z的方法,在此基础上继续研究(y,z)的某些重要性质,同时推广了Chen Zengjing等人文章中相应的结论. This paper explores the properties of solutions of BSDEs via the theory of Malliavin derivative. The main result is that the method to compare part z has been got, and applying a new method to generalize the corresponding theorems given by Chen Zengjing et al.
作者 张慧
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第6期741-748,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10131030)资助的项目.
关键词 倒向随机微分方程 Malliavin微分 共单调定理 Backward stochastic differential equation, Malliavin derivative, Comonotonic theorem
  • 相关文献

参考文献8

  • 1Pardoux E.and Peng S.,Adapted solution of a backward stochastic differential equation[J],Systems Control Letters.,1990,14:55-61.
  • 2Peng S.,Probabilistic interpretation for systems of quasilinear parabolic partial differential equation and application[J],Stochastic and Stochastic Reports.,1991,37:61-74.
  • 3Chen Z.,Kulperger R.And Wei G.,A comonotonic theorem for BSDEs[J],Stochastic Processes and their Application.,2005,115:41-54.
  • 4Chen Z.and Ang S.ès,An integral representation theorem of g-expectation[J],INRIA.,2001,4284:1-20.
  • 5El Karoui N.,Peng S.and Quenez M.-C.,Backward stochastic differential equations in finance[J],Math.Finance.,1997,7:1-71.
  • 6Peng S.,Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type[J],Proban.Theory and Rec.Fields.,1999,113:473-499.
  • 7Peng S.,BSDE and related g-expectation[J],Ptisan Research Notes in Mathematics Series.,1997,364:141-159.
  • 8Nualart D.,The Malliavin Calculus and Related Topics,Probability and its Applications[M],New York:Springer-Verlag,1995.

同被引文献4

  • 1PARDOUX E, PENG S. Adapted solution of a backward stochastic differential equation [ J ]. Systems Control Letters, 1990,14:55 - 61.
  • 2PENG S. A general dynamic programming principle and hamiltonjaeobi-bellman equation [ J ]. Stochastics, 1992,38 (2) : 119 - 134.
  • 3KAROUI E N, PENG S, QUENEZ M C. Backward stochastic differential equations in finance [ J ]. Mathematical Finance, 1997,1 :1 -71.
  • 4何坤.倒向随机微分方程解Z的比较定理(英文)[J].山东大学学报(理学版),2007,42(10):1-4. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部