期刊文献+

具有非局部反应的时滞扩散Nicholson方程的行波解 被引量:4

Travelling Waves of Diffusive Nicholson's Blowflies Equation with Delay and Non-local Effect
下载PDF
导出
摘要 对具有扩散项的时滞Nicholson方程的行波解进行了研究.特别是考虑到生物个体在空间位置上的迁移,研究了具有非局部反应的时滞扩散模型.对于弱生成时滞核,运用几何奇异摄动理论,在时滞充分小的情况下,证明了行波解的存在性. This paper considers travelling wave solutions for the diffusive Nicholson's blowflies equation incorporating time-delay and diffusion. Special attention is paid to the modelling of the time delay to incorporate associated non-local spatial terms which account for the drift of individuals to their present position from their possible positions at previous times. For the weak generic delay kernel, the authors show that travelling wave solutions exist provided the delay is sufficiently small, using the geometric singular perturbation theory.
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第6期771-778,共8页 Chinese Annals of Mathematics
基金 浙江省自然科学基金(No.604359)东华大学校科研基金(No.109-10-0044075)资助的项目.
关键词 行波解 Nicholson方程 非局部反应 Travelling waves, Nicholson's blowflies, Non-local effect
  • 相关文献

参考文献10

  • 1Wu J.,Theory and Applications of Partial Functional Differential Equations[M],New York:Springer-Verlag,1996.
  • 2Schaaf K.,Asymptotic behavior and travelling wave solutions for parabolic functional differential equations[J],Trans.Amer.Math.Soc.,1987,302:587-615.
  • 3Yang Y.and So J.W.H.,Dynamics for the diffusive Nicholson's blowflies equation[C]//W.Chen and S.Hu (eds.),Proceedings of the International Conference on Dynamics Systems and Differential Equations,Springfield,MO'U.S.A,1998,Volume 11.
  • 4So J.W.H.and Yang Y.,Dirichlet problem for the diffusive Nicholson's blowflies equation[J],J.Differ.Equ.,1998,150:317-348.
  • 5So J.W.H.and Zou X.,Traveling waves for the diffusive Nicholson's blowflies equation[J],Appl.Math.Comput.,2001,122:385-395.
  • 6Gourley S.A.,Travelling fronts in the diffusive Nicholson's blowflies equation withdistributed delays[J],Math.Comput.Model.,2000,32:843-853.
  • 7Britton N.F.,Spatial structures and periodic travelling waves in an intgro-differential reaction-diffusion population model[J],SIAM J.Appl.Math.,1990,50:1663-1688.
  • 8Gourley S.A.and Britton N.F.,A predator prey reaction diffusion system with nonlocal effects[J],J.Math.Biol.,1997,35:843-867.
  • 9Gourley S.A.and Chaplain M.A.J.,Travelling fronts in a food-limited population model with time delay[J],Proc.Roy.Soc.Edin.A.,2002,132:75-89.
  • 10Fenichel N.,Geometric singular perturbation theory for ordinary differential equations[J],J.Differ.Equ.,1979,31:53-98.

同被引文献26

  • 1Nicholson A J. An outline of the dynamics of animal populations[J]. Aust J Zool, 1954, 2 (1) : 9-65.
  • 2Gurney W S C, Blythe S P, Nisbet R M. Nicholson' s blowflies revisited[J]. Nature, 1980, 287 : 17-21.
  • 3Kopell N, Howard L N. Plane wave solutions to reaction-diffusion equations[J]. Stud Appl Math, 1973,52 : 291-328.
  • 4Smith H L. Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems [ M ]. Providence RI: American Mathematical Society, 1995.
  • 5So J W-H, Yu J S. Global attractivity and uniform persistence in Nicholson' s blowflies [ J ]. Diff Equ Dyn Sys, 1994,2(1) : 11-18.
  • 6Law R, MurreU D J, Dieckmann U. Population growth in space and time: spatial logistic equations[ J]. Ecoloyy, 2003,84( 1 ) : 252-262.
  • 7Yang Y, So J W-H. Dynamics for the diffusive Nicholson' s blowflies equation[ C]//Chen W, Hu S. Dynamical Systems and Differential Equations. Vol Ⅱ. Springfield: Southwest Missouri State University, 1998: 333-352.
  • 8So J W-H, Wu J, Yang Y. Numerical Hopf bifurcation analysis on the diffusive Nicholson' s blowflies equation[J]. Appl Math Comput, 2000, 111( 1 ) : 53-60.
  • 9So J W-H, Zou X. Travelling waves for the diffusive Nicholson' s blowflies equation[ J]. Appl Math Comput, 2001, 122( 1 ) : 385-392.
  • 10So J W-H, Yang Y. Dirichlet problem for the diffusive Nicholson' s blowflies equation[J]. J Differential Equations, 1998, 150( 1 ) : 317-348.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部