摘要
对具有扩散项的时滞Nicholson方程的行波解进行了研究.特别是考虑到生物个体在空间位置上的迁移,研究了具有非局部反应的时滞扩散模型.对于弱生成时滞核,运用几何奇异摄动理论,在时滞充分小的情况下,证明了行波解的存在性.
This paper considers travelling wave solutions for the diffusive Nicholson's blowflies equation incorporating time-delay and diffusion. Special attention is paid to the modelling of the time delay to incorporate associated non-local spatial terms which account for the drift of individuals to their present position from their possible positions at previous times. For the weak generic delay kernel, the authors show that travelling wave solutions exist provided the delay is sufficiently small, using the geometric singular perturbation theory.
出处
《数学年刊(A辑)》
CSCD
北大核心
2006年第6期771-778,共8页
Chinese Annals of Mathematics
基金
浙江省自然科学基金(No.604359)东华大学校科研基金(No.109-10-0044075)资助的项目.