期刊文献+

弱Hopf代数上的扭积 被引量:3

Twisted Products over Weak Hopf Algebras
下载PDF
导出
摘要 在弱Hopf代数上,定义了交叉积概念,并且得到了它的两种特殊形式,冲积和扭积.特别地,给出了扭积为弱Hopf代数的一个充要条件,推广了Hopf代数的相应结论. In this paper, the notion of crossed products over weak Hopf algebras is defined and the smash products and the twisted products are their special cases. Moreover, a sufficient and necessary condition for a twisted product to be a weak Hopf algebra is given. It generalizes the corresponding results for Hopf algebras.
作者 侯波 王志玺
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第6期779-788,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271081)北京市自然科学基金(No.1042004)河北省自然科学基金(No.102132)资助的项目.
关键词 弱HOPF代数 交叉积 扭积 Weak Hopf algebra, Crossed product, Twisted product
  • 相关文献

参考文献12

  • 1Bohm G.,Nill F.and Szlachanyi K.,Weak Hopf algebras 1:Integral theory and C*-structure[J],J.Algebra,1999,221:385-438.
  • 2Montgomery S.,Hopf algebras and their actions on rings[M] //CBMS Regional Conference Series in Mathematics,82,AMS,1993.
  • 3Hayashi T.,Quantum group symmetry of partition function of IRF models and its applications to Jones'index theory[J],Comm.Math.Phy.,1993,157:331-345.
  • 4Nikshych D.and Vainerman L.,Algebraic versions of a finite dimensional quantum groupoid[J],Lecture Notes in Pure and Appl.Math.,2000,209:189-221.
  • 5Yamanouchi T.,Duality of generalized Kac algebras and a characterization of finite groupoids algebras[J],J.Algebra,1994,163:9-50.
  • 6Kadison L.and Nikshych D.,Frobenius extensions and weak Hopf algebras[J],J.Algebra,2001,244:312-342.
  • 7Etingof P.and Nikshych D.,Dynamical quantum groups at roots of 1[J],Duke Math.J.,2001,108:135-168.
  • 8Blattner R.J.,Cohen M.and Montgomery S.,Crossed products and inner actions of Hopf algebras[J],Trans.AMS,1986,298:671-711.
  • 9Doi Y.and Takeuchi M.,Cleft comodule algebras of a bialgebra[J],Comm.Algebra,1986,14:801-818.
  • 10Boca I.,A central theorem for Hopf algebras[J],Comm.in Algebra,1997,25(8):2593-2606.

同被引文献8

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部