期刊文献+

基于并行神经网络的二维FIR数字滤波器设计 被引量:1

Design of 2-D FIR Digital Filters Using Parallel Neural Networks Algorithm
下载PDF
导出
摘要 通过对二维FIR线性相位滤波器的幅频响应特性的分析,提出了一种用并行神经网络算法来设计二维FIR线性相位数字滤波器的新方法,其主要思想是使幅频响应误差函数最小化.该方法避免了矩阵的求逆运算,而且因为采用了并行算法,能快速获得滤波器系数.给出了二维FIR圆对称线性相位低通数字滤波器优化设计实例.计算机仿真结果表明由该方法设计的二维数字滤波器,通带和阻带范围波动小,所需计算量非常少,稳定性强. A new approach for the design of two-dimensional (2-D) finite-impulse response (FIR) linearphase digital filters is presented based on a parallel neural networks algorithm (PNNA) by analyzing the characteristics of 2-D FIR linear-phase filters, its main idea is to minimize the amplitude-frequency response error function. The method avoids matrix inversion, and makes a very fast calculation of the filter's coefficients possible because of the utilization of parallel algorithm. Optimal design example of 2-D FIR circularly-symmetric linearphase lowpass filters are given, and the results show that the ripple in passband and stopband is much small, and the PNNA-based method is of strong stability and requires considerably little amount of computations.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期72-75,共4页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(50677014) 湖南省自然科学基金资助项目(06JJ2024) 高校博士点基金资助项目(20060532002) 湖南大学撷英计划资助项目(NCET-04-0767)
关键词 二维数字滤波器 线性相位 并行神经网络算法 优化设计 2-D digital filters linear-phase parallel neural network algorithm optimal design
  • 相关文献

参考文献10

  • 1SPEAKE T C, MERSEREAU R M. A note on the use of windows for 2-D filter design [J]. IEEE Trans ASSP, 1981, 29(2): 125- 127.
  • 2NGUYEN D T, SWAMY M N S. Formulas for parameters scaling in the McClellan transform [ J ]. IEEE Trans Circuits Syst,1986, 33(I): 108- 109.
  • 3ALGAZI V R. Design of almost minimax FIR filters in one and two dimensions by WLS techniques [J ]. IEEE Trans Circuits Syst, 1986,33(6) : 590 - 596.
  • 4HSIEH C H, KUO C M, JOU Y D, et al. Design of two-dimensional FIR digital filters by a two-dimensional WLS technique[J]. IEEE Trans Circuits Syst Ⅱ, 1997, 44(5) :348 - 412.
  • 5CHARALAMBOUS C. The performance of an algorithm on minimax design of two-dimensional linear phase FIR filters [J]. IEEE Trans Circults Syst, 1985, 32(10) : 1016 - 1028.
  • 6LAMG M, SELESNICK I W, BURRUS C S. Constrained least squares design of 2-D FIR filters [J]. IEEE Trans Signal Processing, 1996, 44(5): 1234-1241.
  • 7TSENG C C. Design of 1-D and 2-D variable fractional delay allpass filters using weighted least - square method [ J ]. IEEE Trans Circuits Syst Ⅰ, 2002, 49(10) : 1413- 1422.
  • 8ZHU W P, AHMAD M O, SWAMY M N S. A closed form solution to the least square design problem of 2-D linear phase FIR filters[J]. IEEE Trans Circuits Syst Ⅱ, 1997, 12(44) : 1032 -1039.
  • 9LU W S. A unified approach for the design of 2-D digital filters via semidefinite programming [J].IEEE Trans Circuits Syst Ⅰ,2002, 49(6): 814- 825.
  • 10王小华,何怡刚,彭玉楼.神经网络在4型FIR高阶多通带滤波器的自适应优化设计研究[J].湖南大学学报(自然科学版),2004,31(2):66-69. 被引量:6

二级参考文献7

  • 1AV奥本海母 RW谢弗著 董士嘉 杨耀增译.数字信号处理[M].北京:科学出版社,1986.173-174.
  • 2LEE J H, CHEN C K, LIM Y C. Design of discrete coefficent FIR digital filters with arbitrary amplitute and phase responses[J]. IEEE Trans Circuits Syst, July, 1993,40:444 -448.
  • 3LJUNG L, SODERSTROM T. Theory and practice of recursive identification[M]. the MIT Press, 1983.
  • 4LIM Y C, LEE J H, CHEN C K, et al. A weight least squares algorithm for quasi-equiripple FIR and IIR digital filter design[J].IEEE trans. Signal Processing, 1992,40:551 - 558.
  • 5LNGLEVINAYK PROAKISJOHNG 著 陈怀琛 王朝英 高西全译.数字信号处理及其MATLAB实现[M].北京:电子工业出版社,1998..
  • 6赖晓平.FIR数字滤波器的递推最小二乘设计算法[J].信号处理,1999,15(3):260-264. 被引量:25
  • 7曾喆昭,唐忠.神经网络在FIR带通滤波器设计中的应用研究[J].电子测量与仪器学报,2002,16(2):10-14. 被引量:12

共引文献5

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部