期刊文献+

MgH_2-X(X=Si,Ge,Sn,Pb)体系解氢能力的第一原理计算 被引量:1

First-Principles Calculation of Dehydrogenating Properties of MgH_2-X(X=Si,Ge,Sn,Pb) Systems
下载PDF
导出
摘要 采用基于密度泛函理论的第一原理赝势平面波方法,研究了MgH2-X(X=Si,Ge,Sn,Pb)合金化体系的能量、几何与电子结构.负形成热的计算发现:合金化元素X在镁氢化合物(MgH2)中少量固溶时,体系相结构稳定性变差,预示着解氢能力得到改善.电子态密度(DOS)与电子密度的进一步分析发现:镁氢化合物X合金化后,X与其周围的H原子相互作用不明显,而Mg-H之间的成键作用减弱.体系Ge合金化解氢能力增强的理论计算与实验结果一致,预测Si,Sn,Pb少量固溶于MgH2能提高体系的解氢能力. A first-principles plane-wave pseudopotential method based on the density functional theory was used to investigate the energy and electronic structure of magnesium hydride (MgH2) alloyed by X(X = Si,Ge, Sn,Pb). Through calculations of the negative heat of formation of magnesium hydride alloyed by X, it was found that when a little X dissolve into magnesium hydride, the structural stability of alloying systems decreases, which indicates that the dehydrogenation properties of MgH2 can be improved. After comparing the densities of states (DOS) and the charge distribution of MgH2 with and without X alloying, it was found that the improvement of the dehydrogenation properties of MgH2 alloyed by X attributes to the fact that the weakened bonding between magnesium and hydrogen is caused by no stronger interactions between X and hydrogen. The calculation results of the improvement of the dehydrogenation properties of MgH2-X (X= Ge) systems are in agreement with the experimental results. Hence, the dehydrogenation properties of MgH2 are expected to be improved by the addition of Si, Sn, Pb alloying elements.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期85-89,共5页 Journal of Hunan University:Natural Sciences
基金 教育部高等学校博士学科点专项科研基金资助项目(20020530012)
关键词 赝势平面波 镁氢化合物 合金形成热 电子结构 plane-wave pseudopotential theory magnesium hydride heat of formation electronic structure
  • 相关文献

参考文献1

二级参考文献17

  • 1[1]Liang,G.,Huot,J.,Boily,S.et al.,Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite,J.Alloys Compd,2000,305:239―245.
  • 2[2]Shang,C.X.,Bououdina,M.,Song,Y.et al.,Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al,Ti,Fe,Ni,Cu and Nb) for hydrogen storage,J.Hydrogenenergy,2004,29:73―80.
  • 3[3]Liang,G.,Huot,J.,Boily,S.et al.,Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti,V,Mn,Fe and Ni) systems,J.Alloys Compd,1999,292:247―252.
  • 4[4]Song,Y.,Guo,Z.X.,Yang,R.,Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications:A first-principles investigation,Phys.Rev.B,2004,69:094205―094215.
  • 5[5]Bortz,M.,Bertheville,B.,Bottqer,G.et al.,Structure of the high pressure phase γ-MgH2 by neutron powder diffraction,J.Alloys Compd,1999,287:L4―6.
  • 6[6]Smithson,H.,Marianetti,C.A.,Morgan,D.et al.,First-principles study of the stability and electronic structure of metal hydrides,Phys.Rev.B,2002,66:144107―144117.
  • 7[7]Segall,M.D.,Lindan,P.L.D.,Probert,M.J.et al.,First-principles simulation:ideas,illustrations and the CASTEP code,J.Phys:Condens Matter,2002,14:2717―2743.
  • 8[8]Marlo,M.,Milman,V.,Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals,Phys.Rev.B,2000,62:2899―2907.
  • 9[9]Vanderbilt,D.,Soft self-consistent pseudopotentitals in a generalized eigenvalue formalism,Phys.Rev.B,1990,41:7892―7895.
  • 10[10]Franscis,G.P.,Payne,M.C.,Finite basis set corrections to total energy pseudopotential calcaulations,J.Phys:Condens Matter,1990,2:4395―4404.

共引文献10

同被引文献64

  • 1Liang G, Huot J, Boily S, et al. Catalytic effect of transi- tion metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm:Ti, V, Mn, Fe and Ni) systems [J] J Alloys Compd, 1999,292(1-2) :247.
  • 2Zaluski L, Zaluska A, Str6m-Olsen J O. Hydrogen absorp- tion in nanocrystalline Mg2 Ni formed by mechanical alloying [J]. J Alloys Compd, 1995,217(2):245.
  • 3Hanada N, Ichikawa T, Fujii H. Catalytic effect of nanop- article 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling [J]. J Phys Chem B,2005,109(15):7188.
  • 4Berlouis L E A, Honnor P, Hall P J, et al. An investiga- tion of the effect of Ti, Pd and Zr on the dehydriding kine- tics of MgH2 [J]. J Mater Sci, 2006,41(19) : 6403.
  • 5Imamura H, Yoshihara K, Yoo M, et al. Dehydriding of Sn/MgH2 nanocomposite formed by ball milling of MgH2 with Sn[J]. Int J Hydrogen Energy,2007,32(17):4191.
  • 6Shang C Guo Z. Structural and desorption characterisations o{ milled (MgH2Y, Ce) powder mixtures for hydrogen storage[J]. Int J Hydrogen Energy, 2007,32(14) : 2920.
  • 7Glage A, Ceccato R, Lonardelli I, et aL A powder metal- lurgy approach {or the production of a MgH2-A1 composite material[J]. J Alloys Compd, 2009,478(1-2) : 273.
  • 8Imamura H, Tanaka K, Kitazawa I, et al. Hydrogen sto- rage properties of nanocrystalline MgHz and MgH2/Sn nanoeomposite synthesized by ball milling [J]. J Alloys Compd, 2009,484 (1-2) : 939.
  • 9Polanski M, Bystrzycki J. The influence of different addi- tives on the solid-state reaction of magnesium hydride (MgH2) with Si[J], Int J Hydrogen Energy, 2009,34 (18) : 7692.
  • 10Luna C R, Maechi C E, Juan A, et aL Electronic and bon- ding properties of MgH~-Nb containing vaeancies[J]. Int J Hydrogen Energy, 2010,35(22) : 12421.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部