期刊文献+

现实环境下权证定价方式探讨

Exploring the Way of Warrant Pricing in Real Environment
下载PDF
导出
摘要 权证是一种特殊期权,B-S模型是迄今为止被认为最精确有效的期权定价模型,但该模型必须建立在许多假设下,而这些假设与现实世界是不尽相符的,使得此模型在实际运作上易产生价格偏差的现象。人工神经网络由于能模拟人脑的思维方式,具有高速计算和学习的特性,使它在预测、评价等方面有很好的应用效果。应用基于BP神经网络的权证定价方法可以缩小对权证价格预测的误差。 The Warrant is one kind of special options, and the B - S model is considered to the most effective options pricing model to the date. This model is established under many suppositions that do not accord with the real world, thus the model may easily result in price deviation in the actual operation. Artificial Neural Network has good application results in the forecast and evaluation, because it can simulate the mentality of the human brain, and has characteristics of high - speed computing and learning. Therefore, the pricing method based on BP Neural Network can reduce the price deviation in the forecast.
机构地区 中南大学商学院
出处 《茂名学院学报》 2006年第6期46-50,共5页 Journal of Maoming College
关键词 权证 BP网络模型 B—S模型 warrant BP network model B - S Model
  • 相关文献

参考文献4

  • 1上海证券研究所.权证定价与避险策略研究[N].上海证券报,2005—07—07(4).
  • 2Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973,81(7) :637 - 655.
  • 3Martin T. Hagan, Howard B. Demuth, Mark H. Beale. 神经网络设计[M].戴葵等,译.北京:机械工业出版社,2005.
  • 4董长虹.Matlab神经网络及应用[M].北京:国防工业出版社,2005.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部